Theoretical and Applied Genetics

, Volume 131, Issue 5, pp 1111–1123 | Cite as

Maximizing the expression of transgenic traits into elite alfalfa germplasm using a supertransgene configuration in heterozygous conditions

  • Cintia Jozefkowicz
  • Romina Frare
  • Romina Fox
  • Ariel Odorizzi
  • Valeria Arolfo
  • Elba Pagano
  • Daniel Basigalup
  • Nicolas Ayub
  • Gabriela Soto
Original Article

Abstract

Key message

A novel process for the production of transgenic alfalfa varieties.

Abstract

Numerous species of legumes, including alfalfa, are critical factors for agroecosystems due to their ability to grow without nitrogen fertilizers derived from non-renewable fossil fuels, their contribution of organic nitrogen to the soil, and their increased nutritional value. Alfalfa is the main source of vegetable proteins in meat and milk production systems worldwide. Despite the economic and ecological importance of this autotetraploid and allogamous forage crop, little progress has been made in the incorporation of transgenic traits into commercial alfalfa. This is mainly due to the unusually strong transgene silencing and complex reproductive behavior of alfalfa, which limit the production of events with high transgene expression and the introgression of selected events within heterogeneous synthetic populations, respectively. In this report, we describe a novel procedure, called supertransgene process, where a glufosinate-tolerant alfalfa variety was developed using a single event containing the BAR transgene associated with an inversion. This approach can be used to maximize the expression of transgenic traits into elite alfalfa germplasm and to reduce the cost of production of transgenic alfalfa cultivars, contributing to the public improvement of this legume forage and other polyploid and outcrossing crop species.

Notes

Acknowledgements

We thank IGEAF-CICVyA and EEA Manfredi for their technical support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

122_2018_3062_MOESM1_ESM.pdf (55 kb)
Supplementary material 1 (PDF 55 kb)
122_2018_3062_MOESM2_ESM.pdf (338 kb)
Supplementary material 2 (PDF 337 kb)
122_2018_3062_MOESM3_ESM.pdf (138 kb)
Supplementary material 3 (PDF 137 kb)
122_2018_3062_MOESM4_ESM.pdf (51 kb)
Supplementary material 4 (PDF 51 kb)

References

  1. Ahn IP (2008) Glufosinate ammonium-induced pathogen inhibition and defense responses culminate in disease protection in bar-transgenic rice. Plant Physiol 146:213–227CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alves JM, Chikhi L, Amorim A, Lopes AM (2014) The 8p23 inversion polymorphism determines local recombination heterogeneity across human populations. Genome Biol Evol 6:921–930CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ayala D, Fontaine MC, Cohuet A, Fontenille D, Vitalis R, Simard F (2011) Chromosomal inversions, natural selection and adaptation in the malaria vector Anopheles funestus. Mol Biol Evol 28:745–758CrossRefPubMedGoogle Scholar
  4. Beazley KA, Ferreira KL, Fitzpatrick SN, McCaslin MH, Reyes CC (2012) Glyphosate tolerant alfalfa events and methods for detection thereof (US8124848). Monsanto Technology LlcGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  6. Busbice T, Hill R, Carnahan H (1972) Genetics and breeding procedures. Alfalfa Sci Technol 15:283–318Google Scholar
  7. Castle LA, Errampalli D, Atherton TL, Franzmann LH, Yoon ES, Meinke DW (1993) Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol Gen Genet 241:504–514CrossRefPubMedGoogle Scholar
  8. CERA (2011) A review of the environmental safety of the PAT protein. Environ Biosaf Res 10:73–101Google Scholar
  9. Dragićević M, Platiša J, Nikolić R, Todorović S, Bogdanović M, Mitić N, Simonović A (2012) Herbicide phosphinothricin causes direct stimulation hormesis. Dose-Response 11:dose-response.1Google Scholar
  10. Duke SO, Powles SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64:319–325CrossRefPubMedGoogle Scholar
  11. Feder JL, Nosil P (2009) Chromosomal inversions and species differences: when are genes affecting adaptive divergence and reproductive isolation expected to reside within inversions? Evolution; Int J Org Evol 63:3061–3075CrossRefGoogle Scholar
  12. Garcia AN, Ayub ND, Fox AR, Gomez MC, Dieguez MJ, Pagano EM, Berini CA, Muschietti JP, Soto G (2014) Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia. BMC Plant Biol 14:248CrossRefPubMedPubMedCentralGoogle Scholar
  13. Green JM (2014) Current state of herbicides in herbicide-resistant crops. Pest Manag Sci 70:1351–1357CrossRefPubMedGoogle Scholar
  14. Grohmann L, Brunen-Nieweler C, Nemeth A, Waiblinger HU (2009) Collaborative trial validation studies of real-time PCR-based GMO screening methods for detection of the bar gene and the ctp2-cp4epsps construct. J Agric Food Chem 57:8913–8920CrossRefPubMedGoogle Scholar
  15. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  16. Heap I (2014) Global perspective of herbicide-resistant weeds. Pest Manag Sci 70:1306–1315CrossRefPubMedGoogle Scholar
  17. Hoffmann AA, Sgro CM, Weeks AR (2004) Chromosomal inversion polymorphisms and adaptation. Trends Ecol Evol 19:482–488CrossRefPubMedGoogle Scholar
  18. ILSI (2017) ILSI Research Foundation. GM Crop Database. ILSI Research Foundation, Washington D.C.Google Scholar
  19. Jozefkowicz C, Bottero E, Pascuan C, Pagano E, Ayub ND, Soto G (2016) Minimizing the time and cost of production of transgenic alfalfa libraries using the highly efficient completely sequenced vector pPZP200BAR. Plant Cell Rep 35:1987–1990CrossRefPubMedGoogle Scholar
  20. Laufs P, Autran D, Traas J (1999) A chromosomal paracentric inversion associated with T-DNA integration in Arabidopsis. Plant J 18:131–139CrossRefPubMedGoogle Scholar
  21. Lei Y, Hannoufa A, Yu P (2017) The use of gene modification and advanced molecular structure analyses towards improving alfalfa forage. Int J Mol Sci 18:298CrossRefPubMedCentralGoogle Scholar
  22. Liang GH, Skinner DZ (eds) (2004) Genetically modified crops: their development, uses, and risks. Food Products Press, BinghamtonGoogle Scholar
  23. Lopes AR, Bello D, Prieto-Fernandez A, Trasar-Cepeda C, Manaia CM, Nunes OC (2015) Relationships among bulk soil physicochemical, biochemical, and microbiological parameters in an organic alfalfa-rice rotation system. Environ Sci Pollut Res Int 22:11690–11699CrossRefPubMedGoogle Scholar
  24. McCaslin MH, Temple SJ, Tofte JE (2002) Methods for maximizing expression of transgenic traits in autopolyploid plants. US 2002/0042928Google Scholar
  25. Nacry P, Camilleri C, Courtial B, Caboche M, Bouchez D (1998) Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics 149:641–650PubMedPubMedCentralGoogle Scholar
  26. Nikolić R, Zdravković-Korać S, Ninković S, Dragićević M, Miljuš-Đukić J, Banović B, Bohanec B, Savić J, Mitić N (2013) Fertile transgenic Lotus corniculatus resistant to the non-selective herbicide phosphinothricin. Ann Appl Biol 163:475–493Google Scholar
  27. Noor MA, Grams KL, Bertucci LA, Reiland J (2001) Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci USA 98:12084–12088CrossRefPubMedPubMedCentralGoogle Scholar
  28. Rieseberg LH (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16:351–358CrossRefPubMedGoogle Scholar
  29. Rogan G, Fitzpatrick (2004) Petition for Determination of Nonregulated Status: Roundup Ready Alfalfa (Medicago sativa L.) Events J101 and J163. USDA Petition Number 04-110-01PGoogle Scholar
  30. Rubiales D (2014) Alfalfa: back to the future. J Int Legume Soc. ISSN: 2340-1559Google Scholar
  31. Rumbaugh MD, Caddel JL, Rowe DE (1988) Alfalfa and alfalfa improvement. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WIGoogle Scholar
  32. Schubert D, Lechtenberg B, Forsbach A, Gils M, Bahadur S, Schmidt R (2004) Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism versus position effects. Plant Cell 16:2561–2572CrossRefPubMedPubMedCentralGoogle Scholar
  33. Setten L, Soto G, Mozzicafreddo M, Fox AR, Lisi C, Cuccioloni M, Angeletti M, Pagano E, Diaz-Paleo A, Ayub ND (2013) Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions. PLoS One 8:e63666CrossRefPubMedPubMedCentralGoogle Scholar
  34. Soto G, Fox R, Ayub N, Alleva K, Guaimas F, Erijman EJ, Mazzella A, Amodeo G, Muschietti J (2010) TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana. Plant J 64:1038–1047CrossRefPubMedGoogle Scholar
  35. Soto G, Stritzler M, Lisi C, Alleva K, Pagano ME, Ardila F, Mozzicafreddo M, Cuccioloni M, Angeletti M, Ayub ND (2011) Acetoacetyl-CoA thiolase regulates the mevalonate pathway during abiotic stress adaptation. J Exp Bot 62:5699–5711CrossRefPubMedGoogle Scholar
  36. Takano M, Egawa H, Ikeda JE, Wakasa K (1997) The structures of integration sites in transgenic rice. Plant J 11:353–361CrossRefPubMedGoogle Scholar
  37. Uchimiya H, Iwata M, Nojiri C, Samarajeewa PK, Takamatsu S, Ooba S, Anzai H, Christensen AH, Quail PH, Toki S (1993) Bialaphos treatment of transgenic rice plants expressing a bar gene prevents infection by the sheath blight pathogen (Rhizoctonia solani). Nat Biotechnol 11:835–836CrossRefGoogle Scholar
  38. Vermeersch L, De Winne N, Nolf J, Bleys A, Kovarik A, Depicker A (2013) Transitive RNA silencing signals induce cytosine methylation of a transgenic but not an endogenous target. Plant J 74:867–879CrossRefPubMedGoogle Scholar
  39. Zhu C, Wu J, He C (2010) Induction of chromosomal inversion by integration of T-DNA in the rice genome. J Genet Genom 37:189–196CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  2. 2.Instituto de Genética “Ewald Favret” (INTA)Buenos AiresArgentina
  3. 3.Estación Experimental Agropecuaria Manfredi (INTA)CórdobaArgentina

Personalised recommendations