Skip to main content
Log in

Characterization of a new GmFAD3A allele in Brazilian CS303TNKCA soybean cultivar

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key Message

We molecularly characterized a new mutation in the GmFAD3A gene associated with low linolenic content in the Brazilian soybean cultivar CS303TNKCA and developed a molecular marker to select this mutation.

Abstract

Soybean is one of the most important crops cultivated worldwide. Soybean oil has 13% palmitic acid, 4% stearic acid, 20% oleic acid, 55% linoleic acid and 8% linolenic acid. Breeding programs are developing varieties with high oleic and low polyunsaturated fatty acids (linoleic and linolenic) to improve the oil oxidative stability and make the varieties more attractive for the soy industry. The main goal of this study was to characterize the low linoleic acid trait in CS303TNKCA cultivar. We sequenced CS303TNKCA GmFAD3A, GmFAD3B and GmFAD3C genes and identified an adenine point deletion in the GmFAD3A exon 5 (delA). This alteration creates a premature stop codon, leading to a truncated protein with just 207 residues that result in a non-functional enzyme. Analysis of enzymatic activity by heterologous expression in yeast support delA as the cause of low linolenic acid content in CS303TNKCA. Thus, we developed a TaqMan genotyping assay to associate delA with low linolenic acid content in segregating populations. Lines homozygous for delA had a linolenic acid content of 3.3 to 4.4%, and the variation at this locus accounted for 50.83 to 73.70% of the phenotypic variation. This molecular marker is a new tool to introgress the low linolenic acid trait into elite soybean cultivars and can be used to combine with high oleic trait markers to produce soybean with enhanced economic value. The advantage of using CS303TNKCA compared to other lines available in the literature is that this cultivar has good agronomic characteristics and is adapted to Brazilian conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ABIOVE (2017) Estatística Mensal do Complexo Soja

  • Alt JL, Fehr WR, Welke GA, Shannon JG (2005) Transgressive segregation for oleate content in three soybean populations. Crop Sci 45:2005–2007

    Article  CAS  Google Scholar 

  • Anai T, Yamada T, Kinoshita T, Rahman SM, Takagi Y (2005) Identification of corresponding genes for three low-α-linolenic acid mutants and elucidation of their contribution to fatty acid biosynthesis in soybean seed. Plant Sci 168:1615–1623

    Article  CAS  Google Scholar 

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  • Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H (2012) ExPASy: SIB bioinformatics resource portal. Nucl Acids Res 40:W597–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachleda N, Pham AT, Li Z (2016) Identifying FATB1a deletion that causes reduced palmitic acid content in soybean N87-2122-4 to develop a functional marker for marker-assisted selection. Mol Breed 36(4):45

    Article  Google Scholar 

  • Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. Prog Lipid Res 49:235–249

    Article  CAS  PubMed  Google Scholar 

  • Bilyeu KD, Palavalli L, Sleper DA, Beuselinck PR (2003) Three microsomal omega-3 fatty-acid dessaturase genes contribute to soybean linolenic acid levels. Crop Sci 43:1833–1838

    Article  CAS  Google Scholar 

  • Bilyeu KD, Palavalli L, Sleper DA, Beuselinck PR (2005) Mutations in soybean microsomal omega-3 fatty acid dessaturase genes reduce linolenic acid concentration in soybean seeds. Crop Sci 45(5):1830–1836

    Article  CAS  Google Scholar 

  • Bilyeu KD, Palavalli L, Sleper DA, Beuselinck PR (2006) Molecular genetic resources for development of 1% linolenic acid soybeans. Crop Sci 46:1913–1918

    Article  CAS  Google Scholar 

  • Bilyeu KD, Gillman JD, Leroy AR (2011) Novel FAD3 mutant allele combinations produce soybeans containing 1% linolenic acid in the seed oil. Crop Sci 52:259–264

    Article  Google Scholar 

  • Brazil (2017) Lei nº 13.263, de março de 2016

  • Bruner AC, Jung S, Abbott AG, Powell GL (2001) The naturally occurring high oleate oil character in some peanut varieties results from reduced oleoyl-PC desaturase activity from mutation of aspartate 150 to asparagine. This work was partially supported by grants from the South Carolina Exp. Stn., Clemson Univ., and by a grant from AgraTech Seeds Inc., Ashburn, GA. Crop Sci 41:522–526

  • Bubeck DM, Fehr WR, Hammond EG (1989) Inheritance of palmitic and stearic acid mutants of soybean. Crop Sci 29:562–656

    Article  Google Scholar 

  • Burkey KO, Booker FL, Pursley WA, Heagle AS (2007) Elevated carbon dioxide and ozone effects on peanut: II. Seed Yield and Quality. Crop Sci 47:1488–1497

    Article  CAS  Google Scholar 

  • Byrum JR, Kinney AJ, Stecca KL, Grace DJ, Diers BW (1997) Alteration of the omega-3 fatty acid desaturase gene is associated with reduced linolenic acid in the A5 soybean genotype. Theor Appl Genet 94:4

    Article  Google Scholar 

  • Cardinal A, Burton JW, Camacho-Roger AM, Whetter R, Chappell AS, Bilyeu KD, Auclair J, Dewey RE (2011) Molecular analysis of GmFAD3A in two soybean populations segregating for the fan, fap1, and fapnc loci. Crop Sci 51(5):2104–2112

    Article  CAS  Google Scholar 

  • Chapell AS, Bilyeu KD (2006) A GmFAD3A mutation in the low linolenic acid soybean line C1640. Plant Breed 125:535–536

    Article  Google Scholar 

  • CONAB (2017) Acompanhamento da Safra Brasileira. SAFRA, p 164

  • Cruz CD (2013) Genes—a software package for analysis in experimental statistics and quantitative genetics. Acta Sci Agron 35:5

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dunton HJ, Lancaster CR, Evans CD, Cowan JC (1951) The flavor problem of soybean oil VII. Linolenic acid. J Am Oil Chem 28:115–118

    Article  Google Scholar 

  • FDA (2015) Final determination regarding partially hydrogenated oils (removing trans fat)

  • FDA (2016) Constituent update: FDA takes step to remove artificial trans fats from processed foods

  • Fehr WR (2007) Breeding for modified fatty acid composition in soybean. Crop Sci 47:72–87

    Article  Google Scholar 

  • Fehr WR, Hammond EG (2000) Reduced linolenic acid production in soybeans. U. S. Patent 6,133,509

  • Flores T, Karpova O, Su X, Zeng P, Bilyeu K, Sleper DA, Nguyen HT, Zhang ZJ (2008) Silencing of GmFAD3 gene by siRNA leads to low alpha-linolenic acids (18:3) of fad3-mutant phenotype in soybean [Glycine max (Merr.)]. Trans Res 17(5):839–850

    Article  CAS  Google Scholar 

  • Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):31

    Article  CAS  PubMed  Google Scholar 

  • Goettel W, Xia E, Upchurch R, Wang ML, Chen P, An YQ (2014) Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content. BMC Genom 15:299

    Article  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucl Acids Res Database Issue 40:D1178–1186

    Article  CAS  Google Scholar 

  • Hammond EG, Fehr WR (1983) Registration of A5 germplasm line of soybean (Reg. No. GP44). Crop Sci 23:192–193

    Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu FB, Stampfer MJ, Manson JE, Rimm E, Colditz GA, Rosner BA, Hennekens CH, Willett WC (1997) Dietary fat intake and the risk of coronary heart disease in women. N Engl J Med 337:1491–1499

    Article  CAS  PubMed  Google Scholar 

  • Hu R, Fan C, Li H, Zhang Q, Fu YF (2009) Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol 10:93

    Article  PubMed  PubMed Central  Google Scholar 

  • Le DT, Aldrich DL, Valliyodan B, Watanabe Y, Ha CV, Nishiyama R, Guttikonda SK, Quach TN, Gutierrez-Gonzalez JJ, Tran LS, Nguyen HT (2012) Evaluation of candidate reference genes for normalization of quantitative RT-PCR in soybean tissues under various abiotic stress conditions. PLoS ONE 7:e46487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leffel RC (1994a) Registration of BARC-12 a low linolenic acid soybean germplasm line. Crop Sci 34:1426–1427

    Article  Google Scholar 

  • Leffel RC (1994b) Registration of BARC-12 a low linolenic acid soybean germplasm line. Crop Sci 34:1426–1427

    Article  Google Scholar 

  • Li L, Wang X, Gai J, Yu D (2007) Molecular cloning and characterization of a novel microsomal oleate desaturase gene from soybean. J Plant Physiol 164:1516–1526

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Fan CM, Zhang XM, Fu YF (2012) Validation of reference genes for real-time quantitative PCR normalization in soybean developmental and germinating seeds. Plant Cell Rep 31:1789–1798

    Article  CAS  PubMed  Google Scholar 

  • Libault M, Thibivilliers S, Bilgin DD, Radwan O, Benitez M, Clough SJ, Stacey G (2008) Identification of four soybean reference genes for gene expression normalization. Plant Genome 1:44–54

    Article  CAS  Google Scholar 

  • Lozinsky S, Yang H, Forseille L, Cook GR, Ramirez-Erosa I, Smith MA (2014) Characterization of an oleate 12-desaturase from Physaria fendleri and identification of 5′UTR introns in divergent FAD2 family genes. Plant Physiol Biochem 75:114–122

    Article  CAS  PubMed  Google Scholar 

  • Miranda Vde J, Coelho RR, Viana AA, de Oliveira Neto OB, Carneiro RM, Rocha TL, de Sa MF, Fragoso RR (2013) Validation of reference genes aiming accurate normalization of qPCR data in soybean upon nematode parasitism and insect attack. BMC Res Notes 6:196

    Article  PubMed  Google Scholar 

  • Mozaffarian D, Katan MB, Ascherio A, Stampfer MJ, Willett WC (2006) Trans fatty acids and cardiovascular disease. N Engl J Med 354:1601–1613

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  PubMed  Google Scholar 

  • Pham AT, Lee JD, Shannon JG, Bilyeu KD (2010) Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol 10:195

    Article  PubMed  PubMed Central  Google Scholar 

  • Pham AT, Lee JD, Shannon JG, Bilyeu KD (2011) A novel FAD2-1 A allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content. Theor Appl Genet 123:793–802

    Article  CAS  PubMed  Google Scholar 

  • Pham AT, Shannon JG, Bilyeu KD (2012) Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil. Theor Appl Genet 125:503–515

    Article  CAS  PubMed  Google Scholar 

  • Pham AT, Bilyeu KD, Chen P, Boerma HR, Li Z (2014) Characterization of the fan1 locus in soybean line A5 and development of molecular assays for high-throughput genotyping of FAD3 genes. Mol Breed 33:895–907

    Article  CAS  Google Scholar 

  • Pinto MO, Good-God PIV, Moreira MA, Barros EG (2013) Association of SNP markers with the linolenic acid content in soybean seeds. Pesqui Agropecu Bras 48:263–269

    Article  Google Scholar 

  • Rahman SM, Takagi Y, Kinoshita T (1996) Genetic control of high oleic acid content in the seed oil of two soybean mutants. Crop Sci 36:1125–1128

    Article  Google Scholar 

  • Reinprecht Y, Pauls KP (2016) Microsomal omega-3 fatty acid desaturase genes in low linolenic acid soybean line RG10 and validation of major linolenic acid QTL. Front Genet 7:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Reinprecht Y, Luk-Labey SY, Larsen J, Poysa VW, Yu K, Rajcan I, Ablett GR, Pauls KP (2009) Molecular basis of the low linolenic acid trait in soybean EMS mutant line RG10. Plant Breed 128:253–258

    Article  CAS  Google Scholar 

  • Ross AJ, Fehr WR, Welke GA, Hammond EG, Cianzio SR (2000) Agronomic and seed traits of 1%—linolenate soybean genotypes. Crop Sci 40:383–386

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Shanklin J, Whittle E, Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33:12787–12794

    Article  CAS  PubMed  Google Scholar 

  • Shi Z, Bachleda N, Pham AT, Bilyeu KD, Shannon G, Nguyen H, Li Z (2015) High-throughput and functional SNP detection assays for oleic and linolenic acids in soybean. Mol Breed 35:176

    Article  Google Scholar 

  • Stojsin D, LuzziI BM, Ablett GR, Tanner JW (1998) Inheritance of low linolenic acid level in the soybean line RG10. Crop Sci 38:1441–1444

    Article  Google Scholar 

  • Sun R, Gao L, Yu X, Zheng Y, Li D, Wang X (2016) Identification of a Delta12 fatty acid desaturase from oil palm (Elaeis guineensis Jacq.) involved in the biosynthesis of linoleic acid by heterologous expression in Saccharomyces cerevisiae. Gene 591:21–26

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinform. Chapter 2: Unit 2–3

  • USDA (2017a) Foreign agricultural service: table 03: major vegetable oils: world supply and distribution (commodity view)

  • USDA (2017b) Foreign agricultural service: world agricultural production

  • van de Mortel M, Recknor JC, Graham MA, Nettleton D, Dittman JD, Nelson RT, Godoy CV, Abdelnoor RV, Almeida AM, Baum TJ, Whitham SA (2007) Distinct biphasic mRNA changes in response to Asian soybean rust infection. Mol Plant Microbe Interact 20:887–899

    Article  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Article  PubMed  PubMed Central  Google Scholar 

  • Waltz E (2010) Food firms test fry Pioneer’s trans fat-free soybean oil. Nat Biotechnol 28:769–770

    Article  CAS  PubMed  Google Scholar 

  • Warner K, Fehr W (2008) Mid-oleic/ultra low linolenic acid soybean oil: a healthful new alternative to hydrogenated oil for frying. J Am Oil Chem Soc 95:945–951

    Article  Google Scholar 

  • White HB, Quakenbush FW, Probst AH (1961) Occurrence and inheritance of linolenic and linoleic acids in soybean seeds. J Am Oil Chem 38:113–117

    Article  CAS  Google Scholar 

  • Wilcox JR, Cavins JF, Nielsen NC (1984) Genetic alteration of soybean oil compositon by a chemical mutagen. J Am Oil Chem 61:97–100

    Article  CAS  Google Scholar 

  • Wilson RF, Burton JW, Brim CA (1981) Progress in the selection for altered fatty acid composition in soybeans. Crop Sci 21:788–791

    Article  CAS  Google Scholar 

  • Yadav NS (1996) Soybean genetics, molecular biology and biotechnology. Biotechnology in Agriculture Series. CAB International

Download references

Acknowledgements

This work was funded by the CNPq (Grant 455812/2014-4), graduate fellowships (L.C.C.S. and L.B.M), post-doctoral fellowships (R.D.B) and a science initiation scholarship (D.B.M. and P.H.S.P.); FAPEMIG (Grant APQ-00077-13 and in part by APQ-01416-16). In memoriam professor Maurilio Alves Moreira.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximiller Dal-Bianco.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author declares that there is no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.C.C., Bueno, R.D., da Matta, L.B. et al. Characterization of a new GmFAD3A allele in Brazilian CS303TNKCA soybean cultivar. Theor Appl Genet 131, 1099–1110 (2018). https://doi.org/10.1007/s00122-018-3061-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3061-2

Navigation