Advertisement

Theoretical and Applied Genetics

, Volume 131, Issue 5, pp 1063–1071 | Cite as

Mapping and validation of a new QTL for adult-plant resistance to powdery mildew in Chinese elite bread wheat line Zhou8425B

  • Aolin Jia
  • Yan Ren
  • Fengmei Gao
  • Guihong Yin
  • Jindong Liu
  • Lu Guo
  • Jizhou Zheng
  • Zhonghu He
  • Xianchun Xia
Original Article

Abstract

Key message

Four QTLs for adult-plant resistance to powdery mildew were mapped in the Zhou8425B/Chinese Spring population, and a new QTL on chromosome 3B was validated in 103 wheat cultivars derived from Zhou8425B.

Abstract

Zhou8425B is an elite wheat (Triticum aestivum L.) line widely used as a parent in Chinese wheat breeding programs. Identification of genes for adult-plant resistance (APR) to powdery mildew in Zhou8425B is of high importance for continued controlling the disease. In the current study, the high-density Illumina iSelect 90K single-nucleotide polymorphism (SNP) array was used to map quantitative trait loci (QTL) for APR to powdery mildew in 244 recombinant inbred lines derived from the cross Zhou8425B/Chinese Spring. Inclusive composite interval mapping identified QTL on chromosomes 1B, 3B, 4B, and 7D, designated as QPm.caas-1BL.1, QPm.caas-3BS, QPm.caas-4BL.2, and QPm.caas-7DS, respectively. Resistance alleles at the QPm.caas-1BL.1, QPm.caas-3BS, and QPm.caas-4BL.2 loci were contributed by Zhou8425B, whereas that at QPm.caas-7DS was from Chinese Spring. QPm.caas-3BS, likely to be a new APR gene for powdery mildew resistance, was detected in all four environments. One SNP marker closely linked to QPm.caas-3BS was transferred into a semi-thermal asymmetric reverse PCR (STARP) marker and tested on 103 commercial wheat cultivars derived from Zhou8425B. Cultivars with the resistance allele at the QPm.caas-3BS locus had averaged maximum disease severity reduced by 5.3%. This STARP marker can be used for marker-assisted selection in improvement of the level of powdery mildew resistance in wheat breeding.

Keywords

APR Blumeria tritici f. sp. tritici STARP marker Triticum aestivum Wheat 90K SNP array 

Abbreviations

ANOVA

Analysis of variance

APR

Adult-plant resistance

BLUEs

Best linear unbiased estimates

CAPS

Cleaved amplified polymorphic sequences

QTL

Quantitative trait locus (loci)

ICIM

Inclusive composite interval mapping

IT

Infection type

KASP

Kompetitive allele-specific PCR

LOD

Logarithm of odds

MAS

Marker-assisted selection

MDS

Maximum disease severity

PVE

Phenotypic variance explained

RFLP

Restriction fragment length polymorphism

RIL

Recombinant inbred line

SNP

Single-nucleotide polymorphisms

STARP

Semi-thermal asymmetric reverse PCR

Notes

Acknowledgements

The authors are grateful to Prof. R. A. McIntosh, Plant Breeding Institute, University of Sydney, for review of this manuscript. This study was supported by the National Key Research and Development Program of China (2016YFD0101802), National Natural Science Foundation of China (31461143021), Natural Science Foundation of Henan province (162300410348), and CAAS Science and Technology Innovation Program.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical standards

We declare that these experiments complied with the ethical standards in China.

Supplementary material

122_2018_3058_MOESM1_ESM.docx (920 kb)
Supplementary material 1 (DOCX 920 kb)

References

  1. Asad MA, Bai B, Lan CX, Yan J, Xia XC, Zhang Y, He ZH (2012) Molecular mapping of quantitative trait loci for adult-plant resistance to powdery mildew in Italian wheat cultivar Libellula. Crop Pasture Sci 63:539–546CrossRefGoogle Scholar
  2. Bahl PN, Salimath PM, Mandal AK (1997) Genetics, cytogenetics and breeding of crop plants. Oxford and IBH Publishing Co. Pvt LTD, New Delhi and Calcutta, pp 75–144Google Scholar
  3. Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  4. Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936CrossRefPubMedGoogle Scholar
  5. Bossolini E, Krattinger SG, Keller B (2006) Development of simple sequence repeat markers specific for the Lr34 resistance region of wheat using sequence information from rice and Aegilops tauschii. Theor Appl Genet 113:1049–1062CrossRefPubMedGoogle Scholar
  6. Bougot Y, Lemoine J, Pavoine MT, Guyomar’ch H, Gautier V, Muranty H, Barloy D (2006) A major QTL effect controlling resistance to powdery mildew in winter wheat at the adult plant stage. Plant Breed 125:550–556CrossRefGoogle Scholar
  7. Colasuonno P, Gadaleta A, Giancaspro A, Nigro D, Giove S, Incerti O, Mangini G, Signorile A, Simeone R, Blanco A (2014) Development of a high-density SNP-based linkage map and detection of yellow pigment content QTLs in durum wheat. Mol Breed 34:1563–1578CrossRefGoogle Scholar
  8. Dakouri A, McCallum BD, Cloutier S (2014) Haplotype diversity and evolutionary history of the Lr34 locus of wheat. Mol Breed 33:639–655CrossRefGoogle Scholar
  9. Dyck PL (1977) Genetics of leaf rust reaction in three introductions of common wheat. Can J Genet Cytol 19:711–716CrossRefGoogle Scholar
  10. Gao FM, Wen WE, Liu JD, Rasheed A, Yin GH, Xia XC, Wu XX, He ZH (2015) Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Front Plant Sci 6:1099PubMedPubMedCentralGoogle Scholar
  11. Hao YF, Parks R, Cowger C, Chen ZB, Wang YY, Bland D, Murphy JP, Guedira M, Brown-Guedira G, Johnson J (2015) Molecular characterization of a new powdery mildew resistance gene Pm54 in soft red winter wheat. Theor Appl Genet 128:465–476CrossRefPubMedGoogle Scholar
  12. Herrera-Foessel SA, Singh RP, Lillemo M, Huerta-Espino J, Bhavani S, Singh S, Lan CX, Calvo-Salazar V, Lagudah ES (2014) Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theor Appl Genet 127:781–789CrossRefPubMedGoogle Scholar
  13. Huo NX, Zhou RH, Zhang FL, Jia JZ (2005) Mapping quantitative trait loci for powdery mildew resistance in wheat. Acta Agron Sin 31:692–696Google Scholar
  14. Keller M, Keller B, Schachermayr G, Winzeler M, Schmid JE, Stamp P, Messmer MM (1999) Quantitative trait loci for resistance against powdery mildew in a segregating wheat × spelt population. Theor Appl Genet 98:903–912CrossRefGoogle Scholar
  15. Kolmer JA, Singh RP, Garvin DF, Viccars L, William HM, Huerta-Espino J, Ogbonnaya FC, Raman H, Orford S, Bariana HS, Lagudah ES (2008) Analysis of the Lr34/Yr18 rust resistance region in wheat germplasm. Crop Sci 48:1841–1852CrossRefGoogle Scholar
  16. Kota R, Spielmeyer W, McIntosh RA, Lagudah ES (2006) Fine genetic mapping fails to dissociate durable stem rust resistance gene Sr2 from pseudo-black chaff in common wheat (Triticum aestivum L.). Theor Appl Genet 112:492–499CrossRefPubMedGoogle Scholar
  17. Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363CrossRefPubMedGoogle Scholar
  18. Lagudah ES, McFadden H, Singh RP, Huerta-Espino J, Bariana HS, Spielmeyer W (2006) Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet 114:21–30CrossRefPubMedGoogle Scholar
  19. Lagudah ES, Krattinger SG, Herrera-Foessel S, Singh RP, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter LL, Keller B (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119:889–898CrossRefPubMedGoogle Scholar
  20. Li ZQ, Zeng SM (2002) Wheat rust in China. China Agriculture Press, Beijing, pp 180–190Google Scholar
  21. Li ZF, Zheng TC, He ZH, Li GQ, Xu SC, Li XP, Yang GY, Singh RP, Xia XC (2006) Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheat line Zhou 8425B. Theor Appl Genet 112:1098–1103CrossRefPubMedGoogle Scholar
  22. Li HH, Ye GY, Wang JK (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374CrossRefPubMedPubMedCentralGoogle Scholar
  23. Liang SS, Suenaga K, He ZH, Wang ZL, Liu HY, Wang DS, Singh RP, Sourdille P, Xia XC (2006) Quantitative trait loci mapping for adult-plant resistance to powdery mildew in bread wheat. Phytopathology 96:784–789CrossRefPubMedGoogle Scholar
  24. Liang D, Yang FP, He ZH, Yao DN, Xia XC (2009) Characterization of Lr34/Yr18, Rht-B1b, Rht-D1b genes in CIMMYT wheat cultivars and advanced lines using STS markers. Sci Agric Sin 42:17–27Google Scholar
  25. Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjørnstad Å (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166CrossRefPubMedGoogle Scholar
  26. Liu ZY, Sun QX, Ni ZF, Yang TM (1999) Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breed 118:215–219CrossRefGoogle Scholar
  27. Liu SX, Griffey CA, Saghai-Maroof MA (2001) Identification of molecular markers associated with adult plant resistance to powdery mildew in common wheat cultivar Massey. Crop Sci 41:1268–1275CrossRefGoogle Scholar
  28. Liu JD, He ZH, Wu L, Bai B, Wen WE, Xie CJ, Xia XC (2016) Genome-wide linkage mapping of QTL for black point reaction in bread wheat (Triticum aestivum L.). Theor Appl Genet 129:2179–2190CrossRefPubMedGoogle Scholar
  29. Liu WX, Koo DH, Xia Q, Li CX, Bai FQ, Song YL, Friebe B, Gill BS (2017) Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat. Theor Appl Genet 130:841–848CrossRefPubMedGoogle Scholar
  30. Long YM, Chao WS, Ma GJ, Xu SS, Qi LL (2017) An innovative SNP genotyping method adapting to multiple platforms and throughputs. Theor Appl Genet 130:597–607CrossRefPubMedGoogle Scholar
  31. Lu YM, Lan CX, Liang SS, Zhou XC, Liu D, Zhou G, Lu LQ, Jing JX, Wang MN, Xia XC, He ZH (2009) QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theor Appl Genet 119:1349–1359CrossRefPubMedGoogle Scholar
  32. Mago R, Brown-Guedira G, Dreisigacker S, Breen J, Jin Y, Singh R, Appels R, Lagudah ES, Ellis J, Spielmeyer W (2011a) An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theor Appl Genet 122:735–744CrossRefPubMedGoogle Scholar
  33. Mago R, Tabe L, McIntosh RA, Pretorius Z, Kota R, Paux E, Wicker T, Breen J, Lagudah ES, Ellis JG, Spielmeyer W (2011b) A multiple resistance locus on chromosome arm 3BS in wheat confers resistance to stem rust (Sr2), leaf rust (Lr27) and powdery mildew. Theor Appl Genet 123:615–623CrossRefPubMedGoogle Scholar
  34. McFadden ES (1930) A successful transfer of emmer characters to vulgare wheat. J Am Soc Agron 22:1020–1034CrossRefGoogle Scholar
  35. McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Xia XC (2017) Catalogue of gene symbols for wheat: 2017 supplement. In: 12th international wheat genetics symposium, YokohamaGoogle Scholar
  36. Meng L, Li HH, Zhang LY, Wang JK (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283CrossRefGoogle Scholar
  37. Moore JW, Herrera-Foessel S, Lan CX, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, Kong XY, Spielmeyer W, Talbot M, Bariana H, Patrick JW, Dodds P, Singh R, Lagudah E (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47:1494–1498CrossRefPubMedGoogle Scholar
  38. Nyquist WE, Baker RJ (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322CrossRefGoogle Scholar
  39. Olesen JE, Mortensen JV, Jørgensen LN, Andersen MN (2000) Irrigation strategy, nitrogen application and fungicide control in winter wheat on a sandy soil. I. Yield, yield components and nitrogen uptake. J Agri Sci 134:1–11CrossRefGoogle Scholar
  40. Petersen S, Lyerly JH, Worthington ML, Parks WR, Cowger C, Marshall DS, Brown-Guedira G, Murphy JP (2015) Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat. Theor Appl Genet 128:303–312CrossRefPubMedGoogle Scholar
  41. Roelfs AP (1977) Foliar fungal diseases of wheat in the People’s Republic of China. Plant Dis Report 61:836–841Google Scholar
  42. Saari EE, Wilcoxson RD (1974) Plant disease situation of high-yielding dwarf wheats in Asia and Africa. Annu Rev Phytopathol 12:49–68CrossRefGoogle Scholar
  43. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal locations and population dynamics. Proc Natl Acad Sci USA 81:8014–8018CrossRefPubMedPubMedCentralGoogle Scholar
  44. Selter LL, Shatalina M, Singla J, Keller B (2014) Identification and implementation of resistance: Genomics-assisted use of genetic resources for breeding against powdery mildew and Stagonospora nodorum blotch in wheat. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources, vol 2. Springer, Dordrecht, pp 360–361Google Scholar
  45. Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genotyping using kompetitive allele specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33:1–14CrossRefGoogle Scholar
  46. Singh RP (1992) Association between gene Lr34 for leaf rust resistance and leaf tip necrosis in wheat. Crop Sci 32:874–878CrossRefGoogle Scholar
  47. Singh RP (1993) Resistance to leaf rust in 26 Mexican wheat cultivars. Crop Sci 33:633–637CrossRefGoogle Scholar
  48. Singh RP, McIntosh RA (1984) Complementary genes for reaction to Puccinia recondita tritici in Triticum aestivum. I. Genetic and linkage studies. Can J Genet Cytol 26:723–735CrossRefGoogle Scholar
  49. Singh RP, Huerta-Espino J, Rajaram S (2000) Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathol Entomol Hung 35:133–139Google Scholar
  50. Singh RP, Huerta-Espino J, William HM (2005) Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turk J Agric For 29:121–127Google Scholar
  51. Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi LL, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genom 4:12–25CrossRefGoogle Scholar
  52. Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2:195–212CrossRefGoogle Scholar
  53. Tucker DM, Griffey CA, Liu S, Brown-Guedira G, Marshall DS, Saghai-Maroof MA (2007) Confirmation of three quantitative trait loci conferring adult plant resistance to powdery mildew in two winter wheat populations. Euphytica 155:1–13CrossRefGoogle Scholar
  54. Wang SC, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wiersma AT, Pulman JA, Brown LK, Cowger C, Olson EL (2017) Identification of Pm58 from Aegilops tauschii. Theor Appl Genet 130:1123–1133CrossRefPubMedGoogle Scholar
  56. Wu L, Xia XC, Zhu HZ, Li SZ, Zheng YL, He ZH (2010) Molecular characterization of Lr34/Yr18/Pm38 in 273 CIMMYT wheat cultivars and lines using functional markers. Sci Agric Sin 43:4553–4561Google Scholar
  57. Wu L, Xia XC, Rosewarne GM, Zhu HZ, Li SZ, Zhang ZY, He ZH (2015a) Stripe rust resistance gene Yr18 and its suppressor gene in Chinese wheat landraces. Plant Breed 134:634–640CrossRefGoogle Scholar
  58. Wu QH, Chen YX, Zhou SH, Fu L, Chen JJ, Xiao Y, Zhang D, Ouyang SH, Zhao XJ, Cui Y, Zhang DY, Liang Y, Wang ZZ, Xie JZ, Qin JX, Wang GX, Li DL, Huang YL, Yu MH, Lu P, Wang LL, Wang L, Wang H, Dang C, Li J, Zhang Y, Peng HR, Yuan CG, You MS, Sun QX, Wang JR, Wang LX, Luo MC, Han J, Liu ZY (2015b) High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda 1817 × Beinong6. PLoS One 10:e0118144CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wu QH, Chen YG, Fu L, Zhou SH, Chen JJ, Zhao XJ, Zhang D, Ouyang SH, Wang ZZ, Li D, Wang GX, Zhang DY, Yuan CG, Wang LX, You MS, Han J, Liu ZY (2016) QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Euphytica 208:337–351CrossRefGoogle Scholar
  60. Xiao YG, Yin GH, Li HH, Xia XC, Yan J, Zheng TC, Ji WQ, He ZH (2011) Genetic diversity and genome-wide association analysis of stripe rust resistance among the core wheat parent Zhou 8425B and its derivatives. Sci Agric Sin 44:3919–3929Google Scholar
  61. Xu WG, Li CX, Hu L, Zhang L, Zhang JZ, Dong HB, Wang GS (2010) Molecular mapping of powdery mildew resistance gene PmHNK in winter wheat (Triticum aestivum L.) cultivar Zhoumai 22. Mol Breed 26:31–38CrossRefGoogle Scholar
  62. Yang WX, Yang FP, Liang D, He ZH, Shang XW, Xia XC (2008) Molecular characterization of slow-rusting genes Lr34/Yr18 in Chinese wheat cultivars. Acta Agron Sin 34:1109–1113CrossRefGoogle Scholar
  63. Yin GH, Wang JW, Wen WE, He ZH, Li ZF, Wang H, Xia XC (2009) Mapping of wheat stripe rust resistance gene YrZH84 with RGAP markers and its application. Acta Agron Sin 35:1274–1281CrossRefGoogle Scholar
  64. Zhang PP, Yin GH, Zhou Y, Qi AY, Gao FM, Xia XC, He ZH, Li ZF, Liu DQ (2017) QTL mapping of adult-plant resistance to leaf rust in the wheat cross Zhou8425B/Chinese Spring using high-density SNP markers. Front Plant Sci 8:793CrossRefPubMedPubMedCentralGoogle Scholar
  65. Zhao XL, Zheng TC, Xia XC, He ZH, Liu DQ, Yang WX, Yin GH, Li ZF (2008) Molecular mapping of leaf rust resistance gene LrZH84 in Chinese wheat line Zhou 8425B. Theor Appl Genet 117:1069–1075CrossRefPubMedGoogle Scholar
  66. Zhao ZH, Sun HG, Song W, Lu M, Huang J, Wu LF, Wang XM, Li HJ (2013) Genetic analysis and detection of the gene MlLX99 on chromosome 2BL conferring resistance to powdery mildew in the wheat cultivar Liangxing 99. Theor Appl Genet 126:3081–3089CrossRefPubMedGoogle Scholar
  67. Zou SK, Yin GH, Tang JW, Han YL, Li SC, Li NN, Huang F, Wang LN, Zhang Q, Gao Y (2017) Molecular and genetic basis of wheat variety Zhoumai 22 and specific primers screening. J Triticeae Crops 37:472–482Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Aolin Jia
    • 1
  • Yan Ren
    • 2
  • Fengmei Gao
    • 3
  • Guihong Yin
    • 4
  • Jindong Liu
    • 1
  • Lu Guo
    • 5
  • Jizhou Zheng
    • 5
  • Zhonghu He
    • 1
    • 6
  • Xianchun Xia
    • 1
  1. 1.Institute of Crop Sciences, National Wheat Improvement CenterChinese Academy of Agricultural Sciences (CAAS)BeijingChina
  2. 2.College of AgronomyHenan Agricultural UniversityZhengzhouChina
  3. 3.Crop Research InstituteHeilongjiang Academy of Agricultural SciencesHarbinChina
  4. 4.Zhoukou Academy of Agricultural SciencesZhoukouChina
  5. 5.Focom Seed Co. LtdZhengzhouChina
  6. 6.International Maize and Wheat Improvement Center (CIMMYT) China OfficeBeijingChina

Personalised recommendations