Advertisement

Theoretical and Applied Genetics

, Volume 131, Issue 3, pp 499–511 | Cite as

Efficient genome-wide genotyping strategies and data integration in crop plants

  • Davoud Torkamaneh
  • Brian Boyle
  • François Belzile
Review

Abstract

Key message

Next-generation sequencing (NGS) has revolutionized plant and animal research by providing powerful genotyping methods. This review describes and discusses the advantages, challenges and, most importantly, solutions to facilitate data processing, the handling of missing data, and cross-platform data integration.

Abstract

Next-generation sequencing technologies provide powerful and flexible genotyping methods to plant breeders and researchers. These methods offer a wide range of applications from genome-wide analysis to routine screening with a high level of accuracy and reproducibility. Furthermore, they provide a straightforward workflow to identify, validate, and screen genetic variants in a short time with a low cost. NGS-based genotyping methods include whole-genome re-sequencing, SNP arrays, and reduced representation sequencing, which are widely applied in crops. The main challenges facing breeders and geneticists today is how to choose an appropriate genotyping method and how to integrate genotyping data sets obtained from various sources. Here, we review and discuss the advantages and challenges of several NGS methods for genome-wide genetic marker development and genotyping in crop plants. We also discuss how imputation methods can be used to both fill in missing data in genotypic data sets and to integrate data sets obtained using different genotyping tools. It is our hope that this synthetic view of genotyping methods will help geneticists and breeders to integrate these NGS-based methods in crop plant breeding and research.

Notes

Acknowledgements

The authors wish to acknowledge the financial support received from Génome Québec, Genome Canada, the Government of Canada, the Ministère de l’Économie, Science et Innovation du Québec, Semences Prograin Inc., Syngenta Canada Inc., Sevita Genetics, Coop Fédérée, Grain Farmers of Ontario, Saskatchewan Pulse Growers, Manitoba Pulse and Soybean Growers, the Canadian Field Crop Research Alliance and Producteurs de grains du Québec.

Compliance with ethical standards

Conflict of interest

The authors have declared that no competing interests exist.

References

  1. Adessi C, Matton G, Ayala G, Turcatti G, Mermod JJ, Mayer P, Kawashima E (2000) Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. Nucleic Acids Res 28(20):e87CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alkan C, Coe BP, Eichler EE (2011) Genome structural variation discovery and genotyping. Nat Rev Genet 12(5):363–376.  https://doi.org/10.1038/nrg2958 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alonso-Blanco C, Andrade J, Becker C, Bemm F, Bergelson J, Zhou X (2016) 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell. 166(2):481–491.  https://doi.org/10.1016/j.cell.2016.05.063 CrossRefGoogle Scholar
  4. Altshuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J, Linton L, Lander ES (2000) An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407:513–516CrossRefPubMedGoogle Scholar
  5. Beissinger TM, Hirsch CN, Sekhon RS, Foerster JM et al (2013) Marker density and read depth for genotyping populations using genotyping-by-sequencing. Genetics 193(4):1073–1081CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635CrossRefPubMedGoogle Scholar
  7. Bukowski R, Guo X, Lu Y, Zou C, He B, Rong Z et al (2015) Construction of the third generation Zea mays haplotype map. bioRxivGoogle Scholar
  8. Bybee SM, Bracken-Grissom H, Haynes BD et al (2011) Targeted amplicon sequencing (TAS): a scalable next-gen approach to multilocus, multitaxa phylogenetics. Genome Biol Evolut 3:1312–1323.  https://doi.org/10.1093/gbe/evr106 CrossRefGoogle Scholar
  9. Campbell PJ et al (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nature Genet 40:722–729CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cao J et al (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nature Genet.  https://doi.org/10.1038/ng.911 Google Scholar
  11. Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22(11):3124–3140.  https://doi.org/10.1111/mec.12354 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cheng Y et al (2010) Identification of novel SNPs by next generation sequencing of the genomic region containing the APC gene in colorectal cancer patients in China. OMICS 14:315–325CrossRefPubMedGoogle Scholar
  13. Cheung CY, Thompson EA, Wijsman EM (2013) GIGI: an approach to effective imputation of dense genotypes on large pedigrees. Am J Hum Genet. 92:504–516CrossRefPubMedPubMedCentralGoogle Scholar
  14. Church GM (2006) Genomes for all. Sci Am 294(1):46–54.  https://doi.org/10.1038/scientificamerican0106-46 CrossRefPubMedGoogle Scholar
  15. Collard BC, Mackill DJ et al (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B Biol Sci 363(1491):557–572CrossRefGoogle Scholar
  16. Cook DE, Lee TG, Guo X, Melito S, Wang K, Bayless AM, Wang J, Hughes TJ, Willis DK, Clemente TE, Diers BW, Jiang J, Hudson ME, Bent AF (2012) Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338 (6111):1206–1209CrossRefPubMedGoogle Scholar
  17. Crossa J, Beyene Y, Kassa S, Pérez P, Hickey JM, Chen C et al (2013) Genomic prediction in maize breeding populations with genotyping by-sequencing G3(3):1903–1926.  https://doi.org/10.1534/g3.113.008227 Google Scholar
  18. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation 666 sequencing. Nature.  https://doi.org/10.1038/nrg3012 PubMedGoogle Scholar
  19. Deschamps S, Llaca V, May GD (2012) Genotyping-by-sequencing in plants. Biology 1(3):460–483.  https://doi.org/10.3390/biology1030460 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Di Giusto D, King GC (2003) Single base extension (SBE) with proofreading polymerases and phosphorothioate primers: improved fidelity in single-substrate assays. Nucleic Acids Res 31(3):e7CrossRefPubMedPubMedCentralGoogle Scholar
  21. Edwards SL, Beesley J, French JD, Dunning AM (2013) Beyond GWASs: illuminating the dark road from association to function. Am J Hum Genet 93(5):779–797CrossRefPubMedPubMedCentralGoogle Scholar
  22. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES et al (2011) A robust, simple genotyping- by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379.  https://doi.org/10.1371/journal.pone.0019379 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Esch E, Szymaniak JM, Yates H, Pawlowski WP, Buckler ES (2007) Using crossover breakpoints in recombinant inbred lines to identify quantitative trait loci controlling the global recombination frequency. Genetics 177(3):1851–1858CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fenselau de Felippes F, Schneeberger K, Dezulian T, Huson DH, Weigel D (2008) Evolution of Arabidopsis thaliana microRNAs from random sequences. RNA 14(12):2455–2459CrossRefPubMedCentralGoogle Scholar
  25. Ganal MW, Polley A, Graner EM, Plieske J, Wieseke R et al (2012) Large SNP arrays for genotyping in crop plants. J Biosci 37(5):821–828CrossRefPubMedGoogle Scholar
  26. Gao L, Turner MK, Chao S, Kolmer J, Anderson JA (2016) Genome wide association study of seedling and adult plant leaf rust resistance in elite spring wheat breeding lines. PLoS ONE 11(2):e0148671CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gasc C, Peyretaillade E, Peyret P (2016) Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Res 44(10):4504–4518.  https://doi.org/10.1093/nar/gkw309 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q et al (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9(2):e90346.  https://doi.org/10.1371/journal.pone.0090346 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Glodzik D, Navarro P, Vitart V, Hayward C, McQuillan R et al (2013) Inference of identity by descent in population isolates and optimal sequencing studies. Eur J Hum Genet. 21:1140–1145CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gompert Z, Forister ML, Fordyce JA, Nice CC, Williamson RJ, Buerkle CA (2010) Bayesian analysis of molecular variance in pyrosequences quantifies population genetic structure across the genome of Lycaeides butterflies. Mol Ecol 19:2455–2473CrossRefPubMedGoogle Scholar
  31. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(333–351):680.  https://doi.org/10.1038/nrg.2016.49 Google Scholar
  32. Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL et al (2009) A first-generation haplotype map of maize. Science 326:1115–1117.  https://doi.org/10.1126/science.1177837 CrossRefPubMedGoogle Scholar
  33. Ha NT, Freytag S, Bickeboeller H (2014) Coverage and efficiency in current SNP chips. Eur J Hum Genet 22:1124–1130.  https://doi.org/10.1038/ejhg.2013.304 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hao K, Chudin E, McElwee J, Schadt E (2009) Accuracy of genome-wide imputation of untyped markers and impacts on statistical power for association studies. BMC Genet 10:27.  https://doi.org/10.1186/1471-2156-10-27 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hedges D, Guettouche T, Yang S, Bademci G (2011) Comparison of three targeted enrichment strategies on the SOLiD sequencing platform. PLoS ONE 6:e18595CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hedrick P (2011) Genetics of populations, 4th edn. Jones & Bartlett Learning Press, Boston. ISBN 978-0-7637-5737-3Google Scholar
  37. Hohenlohe PA, Phillips PC, Cresko WA (2010) Using population genomics to detect selection in natural populations: key concepts and methodological considerations. Int J Plant Sci 171:1059–1071CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hormozdiari F, Hajirasouliha IAM, Eichler EE, Sahinalp SC (2011) Simultaneous structural variation discovery in multiple paired-end sequenced genomes. In: Proceedings of RECOMBGoogle Scholar
  39. Howie B, Marchini J, Stephens M (2011) Genotype imputation with thousands of genomes. G3: genes. Genom Gene 6:457–470Google Scholar
  40. Huang X, Wei X, Sang T, Zhao Q, Feng Q et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967.  https://doi.org/10.1038/ng.695 CrossRefPubMedGoogle Scholar
  41. Huang BM, Raghavan C, Mauleon R, Broman KW, Leung H (2014) Efficient imputation of missing markers in low-coverage genotyping-by-sequencing data from multiparental crosses. Genet Soc Am.  https://doi.org/10.1534/genetics.113.158014 Google Scholar
  42. Hwang S, Kim E, Lee I, Marcotte EM (2015) Systematic comparison of variant calling pipelines using gold standard personal exome variants. Sci Rep 17875:693.  https://doi.org/10.1038/srep17875 Google Scholar
  43. Jamann TM, Sood S, Wisser RJ, Holland JB (2017) High-throughput resequencing of maize landraces at genomic regions associated with flowering time. PLoS ONE 12(1):e0168910.  https://doi.org/10.1371/journal.pone.0168910 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Jarquín D, Kocak K, Posadas L, Hyma K, Jedlicka J, Graef G, Lorenz A (2014) Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC Genom 15(1):740CrossRefGoogle Scholar
  45. Karki R, Pandya D, Elston RC, Ferlini C (2015) Defining “mutation” and “polymorphism” in the era of personal genomics. BMC Med Genom 8:37.  https://doi.org/10.1186/s12920-015-0115-z CrossRefGoogle Scholar
  46. Kiialainen A et al (2011) Performance of microarray and liquid based capture methods for target enrichment for massively parallel sequencing and SNP discovery. PLoS ONE 6:e16486CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kim S, Plagnol V, Hu TT, Toomajian C, Clark RM, Ossowski S et al (2007) Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat Genet 39:1151–1155CrossRefPubMedGoogle Scholar
  48. Kong A, Masson G, Frigge ML, Gylfason A, Zusmanovich P et al (2008) Detection of sharing by descent, long-range phasing and haplotype imputation. Nat Genet. 40:1068–1075CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kumar S, Banks TW, Cloutier S (2012) SNP discovery through next-generation sequencing and its applications. Int J Plant Genom.  https://doi.org/10.1155/2012/831460 Google Scholar
  50. Lachance J, Tishkoff SA (2013) SNP ascertainment bias in population genetic analyses: why it is important, and how to correct it. BioEssays News Rev Mol Cell Dev Biol 35(9):780–786CrossRefGoogle Scholar
  51. LaFramboise T (2009) Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res 37(13):4181–4193CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lam HM, Xu X, Liu X, Chen WB, Yang GH, Wong FL, Li MW, He WM, Qin N, Wang B (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059.  https://doi.org/10.1038/ng.715 CrossRefPubMedGoogle Scholar
  53. Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K (2009a) SNP detection for massively parallel whole-genome resequencing. Genome Res. 19(6):1124–1132.  https://doi.org/10.1101/gr.088013.108 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Li Y, Willer C, Sanna S (2009b) Genotype imputation. Annu Rev Genom Hum Genet 10:387–406.  https://doi.org/10.1146/annurev.genom.9.081307.164242 CrossRefGoogle Scholar
  55. Lin T, Zhu G, Zhang J, Xu X, Yu Q et al (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Genet 46:1220–1226.  https://doi.org/10.1038/ng.3117 CrossRefPubMedGoogle Scholar
  56. Lynch M (2009) Estimation of allele frequencies from high coverage genome sequencing projects. Genetics 182:295–301CrossRefPubMedPubMedCentralGoogle Scholar
  57. Marchini J, Howie B (2010) Genotype imputation for genome-wide association studies. Nat Rev Genet.  https://doi.org/10.1038/nrg2796 PubMedGoogle Scholar
  58. Maron LG, Guimarães CT, Kirst M, Albert PS, Birchler JA et al (2013) Aluminum tolerance in maize is associated with higher MATE1 gene copy number. Proc Natl Acad Sci USA.  https://doi.org/10.1073/pnas.1220766110 Google Scholar
  59. Mascher M, Wu S, Amand PS, Stein N, Poland J (2013a) Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley. PLoS ONE 8(10):e76925.  https://doi.org/10.1371/journal.pone.0076925 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Mascher M, Richmond TA, Gerhardt DJ et al (2013b) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76(3):494–505.  https://doi.org/10.1111/tpj.12294 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet.  https://doi.org/10.1038/nrg2626 PubMedGoogle Scholar
  62. Mills RE et al (2011) Mapping copy number variation at fine scale by population scale genome sequencing. Nature 470:59–65CrossRefPubMedPubMedCentralGoogle Scholar
  63. Muir P, Li S, Lou S, Wang D, Spakowicz DJ, Salichos L et al (2016) The real cost of sequencing: scaling computation to keep pace with data generation. Genome Biol 17:53CrossRefPubMedPubMedCentralGoogle Scholar
  64. Myllykangas S, Natsoulis G, Bell JM, Ji HP (2011) Targeted sequencing library preparation by genomic DNA circularization. BMC Biotechnol 11:122.  https://doi.org/10.1186/1472-6750-11-122 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Nielsen R, Paul JS, Albrechtsen A, Song YS (2011) Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet 12:443–451CrossRefPubMedPubMedCentralGoogle Scholar
  66. Nishida H, Yoshida T, Kawakami K, Fujita M, Long B, Akashi Y, Laurie DA, Kato K (2013) Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect on heading time. Mol Breed 31:27–37CrossRefGoogle Scholar
  67. Pei YF, Li J, Zhang L, Papasian CJ, Deng HW (2008) Analyses and comparison of accuracy of different genotype imputation methods. PLoS ONE 3:e3551.  https://doi.org/10.1371/journal.pone.0003551 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Pérez-de-Castro AM, Vilanova S, Cañizares J, Pascual L, Blanca JM, Díez MJ et al (2012) Application of genomic tools in plant breeding. Curr Genom 13(3):179–195.  https://doi.org/10.2174/138920212800543084 CrossRefGoogle Scholar
  69. Pinkel D, Albertson DG (2005) Comparative genomic hybridization. Annu Rev Genom Hum Genet 6:331–354CrossRefGoogle Scholar
  70. Pirooznia M, Kramer M, Parla J, Goes FS, Potash JB, McCombie WR, Zandi PP (2014) Validation and assessment of variant calling pipelines for next-generation sequencing. Human Genom 8(1):14CrossRefGoogle Scholar
  71. Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102.  https://doi.org/10.3835/plantgenome2012.05.0005 CrossRefGoogle Scholar
  72. Rasheed A, Hao Y, Xia X, Khan A, Xu Y, Varshney RK, He Z (2017) Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol Plant 10(8):1047–1064.  https://doi.org/10.1016/j.molp.2017.06.008 CrossRefPubMedGoogle Scholar
  73. Redon R, Carter NP (2009) Comparative genomic hybridization: microarray design and data interpretation. Methods Mol Biol 529:37–49 (Clifton, N.J.) CrossRefPubMedPubMedCentralGoogle Scholar
  74. Rosato C, Etter P, Kamps-Hughes N, Johnson E (2012) Genotyping on high throughput sequencers: preparation and analysis of reduced representation genomic libraries. J Biomol Tech JBT 23(Suppl):S20Google Scholar
  75. Rutkoski JE, Poland J, Jannink JL, Sorrells ME (2013) Imputation of unordered markers and the impact on genomic selection accuracy. Genes Genomes Gene 3:427–439.  https://doi.org/10.1534/g3.112.005363 Google Scholar
  76. Saxena RK, Edwards D, Varshney RK (2014) Structural variations in plant genomes. Brief Funct Genom 13(4):296–307CrossRefGoogle Scholar
  77. Shirasawa K, Kuwata C, Watanabe M, Fukami M, Hirakawa H, Isobe S (2016) Target amplicon sequencing for genotyping genome-wide single nucleotide polymorphisms identified by whole-genome resequencing in peanut. Plant Genome.  https://doi.org/10.3835/plantgenome2016.06.0052 PubMedGoogle Scholar
  78. Slatkin M (2008) Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat Rev Genet 9(6):477–485CrossRefPubMedPubMedCentralGoogle Scholar
  79. Sonah H, Bastien M, Iquira E, Tardivel A, Légaré G, Boyle B et al (2013) An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE 8(1):e54603CrossRefPubMedPubMedCentralGoogle Scholar
  80. Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL et al (2013) Development and evaluation of SoySNP50 K, a high-density genotyping array for soybean. PLoS ONE 8(1):e54985CrossRefPubMedPubMedCentralGoogle Scholar
  81. Springer NM, Ying K, Fu Y, Ji T, Yeh C-T, Jia Y et al (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5(11):e1000734CrossRefPubMedPubMedCentralGoogle Scholar
  82. Swaminathan MS (2009) Obituary: norman E. Borlaug (1914–2009) plant scientist who transformed global food production. Nature 461(7266):894CrossRefPubMedGoogle Scholar
  83. Swarts K, Bauer E, Glaubitz JC, Ho T, Johnson L et al (2016) A large scale joint analysis of flowering time reveals independent temperate adaptations in maize. bioRxiv.  https://doi.org/10.1101/086082 Google Scholar
  84. Tattini L, D’Aurizio R, Magi A (2015) Detection of genomic structural variants from next-generation sequencing data. Front Bioeng Biotechnol 3:92.  https://doi.org/10.3389/fbioe.2015.00092 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tennessen JA, O’Connor TD, Bamshad MJ, Akey JM (2011) The promise and limitations of population exomics for human evolution studies. Genome Biol 12(9):127CrossRefPubMedPubMedCentralGoogle Scholar
  86. The 3,000 Rice Genomes Project (2014) The 3,000 rice genomes project. Giga Sci 3:7.  https://doi.org/10.1186/2047-217X-3-7 CrossRefGoogle Scholar
  87. Torkamaneh D, Belzile F (2015) Scanning and filling: ultra-dense SNP genotyping combining genotyping-by-sequencing, SNP array and whole-genome resequencing data. PLoS ONE 10(7):e0131533.  https://doi.org/10.1371/journal.pone.0131533 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Torkamaneh D, Laroche J, Belzile F, Candela H (2016) Genome-wide SNP calling from genotyping by sequencing (GBS) data: a comparison of seven pipelines and two sequencing technologies. PLOS ONE 11(8):e0161333CrossRefPubMedPubMedCentralGoogle Scholar
  89. Torkamaneh D, Laroche J, Bastien M, Abed A, Belzile F (2017a) Fast-GBS: a new pipeline for the efficient and highly accurate calling of SNPs from genotyping-by sequencing data. BMC Bioinf.  https://doi.org/10.1186/s12859-016-1431-9 Google Scholar
  90. Torkamaneh D, Laroche J, Tardivel A, O’Donoughue L, Cober E, Rajcan I, Belzile F (2017b) Comprehensive description of genome-wide nucleotide and structural variation in short-season soybean. Plant Biotechnol J 1–11.  https://doi.org/10.1111/pbi.12825
  91. Varela MA, Amos W (2010) Heterogeneous distribution of SNPs in the human genome: microsatellites as predictors of nucleotide diversity and divergence. Genomics. 95(3):151–159.  https://doi.org/10.1016/j.ygeno.2009.12.003 CrossRefPubMedGoogle Scholar
  92. Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12(6):e1001883.  https://doi.org/10.1371/journal.pbio.1001883 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J et al (2015) Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet 47:944–948.  https://doi.org/10.1038/ng.3346 CrossRefPubMedGoogle Scholar
  94. Wang J, Chu S, Zhang H, Zhu Y, Cheng H, Yu D (2016) Development and application of a novel genome-wide SNP array reveals domestication history in soybean. Sci Rep.  https://doi.org/10.1038/srep20728 Google Scholar
  95. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z (2009) Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25:2865–2871CrossRefPubMedPubMedCentralGoogle Scholar
  96. Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J et al (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414.  https://doi.org/10.1038/nbt.3096 CrossRefPubMedGoogle Scholar
  97. Zhu Q, Zheng X, Luo J, Gaut BS, Ge S (2007) Multi locus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol 24:875–888CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Davoud Torkamaneh
    • 1
    • 2
  • Brian Boyle
    • 2
  • François Belzile
    • 1
    • 2
  1. 1.Département de PhytologieUniversité LavalQuébec CityCanada
  2. 2.Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébec CityCanada

Personalised recommendations