Theoretical and Applied Genetics

, Volume 131, Issue 3, pp 649–658 | Cite as

Genetic mapping of a major gene in triticale conferring resistance to bacterial leaf streak

  • Aimin Wen
  • Malini Jayawardana
  • Jason Fiedler
  • Suraj Sapkota
  • Gongjun Shi
  • Zhao Peng
  • Sanzhen Liu
  • Frank F. White
  • Adam J. Bogdanove
  • Xuehui Li
  • Zhaohui Liu
Original Article

Abstract

Key message

A major gene conferring resistance to bacterial leaf streak was mapped to chromosome 5R in triticale.

Abstract

Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa (Xtu), is an important disease of wheat and triticale around the world. Although resistance to BLS is limited in wheat, several triticale accessions have high levels of resistance. To characterize the genetic basis of this resistance, we developed triticale mapping populations using a resistant accession (Siskiyou) and two susceptible accessions (UC38 and Villax St. Jose). Bulked segregant analysis in an F2 population derived from the cross of Siskiyou × UC38 led to the identification of a simple sequence repeat (SSR) marker (XSCM138) on chromosome 5R that co-segregated with the resistance gene. The cross of Siskiyou × Villax St. Jose was advanced into an F2:5 recombinant inbred line population and evaluated for BLS reaction. Genetic linkage maps on this population were assembled with markers generated using genotyping-by-sequencing as well as several SSR markers previously identified on 5R. Quantitative trait locus (QTL) mapping revealed a single major QTL on chromosome 5R, underlined by the same SSR marker as in the Siskiyou × UC38 population. The F1 hybrids of the two crosses were highly resistant to BLS, indicating that resistance is largely dominant. This work will facilitate introgression of this rye-derived BLS resistance gene into the wheat genome by molecular marker-mediated chromosome engineering.

Abbreviations

BLS

Bacterial leaf streak

BSA

Bulked segregant analysis

GBS

Genotyping-by-sequencing

LOD

Log of odds ratio

QTL

Quantitative trait locus

MIM

Multiple interval mapping

RIL

Recombinant inbred line

REMS

Rye expressed microsatellite sites

SNP

Single nucleotide polymorphism

SSD

Single seed descent

SSR

Simple sequence repeat

SCM

Secale cereale microsatellite

Xtu

Xanthomonas translucens pv. undulosa

Notes

Acknowledgements

We thank Mr. Justin Hestead for technical support, Drs. Xiwen Cai and Tim Friesen for critical review of the manuscript, and Drs. Andreas Börner (Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany) and Zengjun Qi (Nanjing Agricultural University, Nanjing, China) for providing the sequences of rye 5R SSR primers. This material is based upon work supported, in part, by the National Institute of Food and Agriculture, United States Department of Agriculture (USDA), under Hatch project number ND02224, the North Dakota Wheat Commission, and the US National Science Foundation research Grant 2012-1238189 (F.F.W).

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest for this article.

Ethical standards

All experiments complied with the ethical standards of the university.

Supplementary material

122_2017_3026_MOESM1_ESM.xlsx (11 kb)
Supplementary material 1 (XLSX 11 kb)
122_2017_3026_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 14 kb)
122_2017_3026_MOESM3_ESM.docx (15 kb)
Supplementary material 3 (DOCX 14 kb)
122_2017_3026_MOESM4_ESM.pdf (853 kb)
Supplementary material 4 (PDF 853 kb)

References

  1. Adhikari TB, Hansen JM, Gurung S, Bonman JM (2011) Identification of new sources of resistance in winter wheat to multiple strains of Xanthomonas translucens pv. undulosa. Plant Dis 95:582–588CrossRefGoogle Scholar
  2. Adhikari TB, Gurung S, Hansen JM, Bonman JM (2012a) Pathogenic and genetic diversity of Xanthomonas translucens pv. undulosa in North Dakota. Phytopathology 102:390–402CrossRefPubMedGoogle Scholar
  3. Adhikari TB, Gurung S, Hansen JM, Jackson EW, Bonman JM (2012b) Association mapping of quantitative trait loci in spring wheat landraces conferring resistance to bacterial leaf streak and spot blotch. Plant Genome 5:1–16CrossRefGoogle Scholar
  4. Bauer E, Schmutzer T, Barilar I, Mascher M, Gundlach H, Martis MM, So Twardziok, Hackauf B, Gordillo A, Wilde P, Schmidt M, Korzun V, Mayer KF, Schmid K, Schön CC, Scholz U (2017) Towards a whole-genome sequence for rye (Secale cereale L.). Plant J 89:853–869CrossRefPubMedGoogle Scholar
  5. Bragard C, Singer E, Alizadeh A, Vauterin L, Maraite H, Swings J (1997) Xanthomonas translucens from small grains: diversity and phytopathological relevance. Phytopathology 87:1111–1117CrossRefPubMedGoogle Scholar
  6. Charkhabi NF, Shams-bakhsh M, Rahimian H (2015) Reaction of Iranian cereal genotype to multiple strains of Xanthomonas translucens pv. cerealis. J Agric Sci Technol 17:241–248Google Scholar
  7. Charkhabi NF, Booher NJ, Peng Z, Wang L, Rahimian H, Shams-Bakhsh M, Liu Z, Liu S, White FF, Bogdanove AJ (2017) Complete genome sequencing and targeted mutagenesis reveal virulence contributions of Tal2 and Tal4b of Xanthomonas translucens pv. undulosa ICMP11055 in bacterial leaf streak of wheat. Front Microbiol 8:1488.  https://doi.org/10.3389/fmicb.2017.01488 CrossRefGoogle Scholar
  8. Cunfer BM, Scolari BL (1982) Xanthomonas campestris pv. translucens on triticale and other small grains. Phytopathology 72:683–686CrossRefGoogle Scholar
  9. Duveiller E, van Ginkel M, Thijssen M (1993) Genetic analysis of resistance to bacterial leaf streak caused by Xanthomonas campestris pv. undulosa in bread wheat. Euphytica 66:35–43CrossRefGoogle Scholar
  10. Duveiller E, Bragard C, Maraite H (1997) Bacterial leaf streak and black chaff caused by Xanthomonas translucens. In: Duveiller E, Fucikovsky L, Rudolph K (eds) The bacterial diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico, pp 25–47Google Scholar
  11. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefPubMedGoogle Scholar
  12. El Attari H, Sarrafi A, Alizadeh A, Dechamp-Guillaume G, Barrault G (1996) Genetic analysis of partial resistance to bacterial leaf streak (Xanthomonas campestris pv. cerealis) in wheat. Plant Pathol 45:736–741CrossRefGoogle Scholar
  13. Forster RL, Schaad NW (1988) Control of black chaff of wheat with seed treatment and a foundation seed health program. Plant Dis 72:935–938CrossRefGoogle Scholar
  14. Gardnier DM, Upadhya NM, Slitter J, Ellis JG, Dodds PN, Kazan K, Manners JM (2014) Genomic analysis of Xanthomonas translucens pathogenic on wheat and barley reveals cross-kingdom gene transfer events and diverse protein delivery systems. PLoS One 9:e84995CrossRefGoogle Scholar
  15. Gustafson JP, Rupert EA, Qualset CO (1973) Registration of UC-38 triticale germplasm. Crop Sci 13:586CrossRefGoogle Scholar
  16. Gustafson JP, Ma XF, Korzun V, Snape JW (2009) A consensus map of rye integrating mapping data from five mapping populations. Theor Appl Genet 118(4):793–800CrossRefPubMedGoogle Scholar
  17. Hackauf B, Wehling P (2002) Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed 121:17–25CrossRefGoogle Scholar
  18. Hackauf B, Wehling P (2003) Development of microsatellite markers in rye: map construction. Plant Breed Seed Sci 48:143–151Google Scholar
  19. Jaenicke S, Bunk B, Wibberg D, Spröer C, Hersemann L, Blom J, Winkler A, Schatschneider S, Albaum SP, Kölliker R, Goesmann A, Pühler A, Overmann J, Vorhölter F (2016) Complete genome sequence of the barley pathogen Xanthomonas translucens pv. translucens DSM 1874T (ATCC 19319T). Genome Announc 4:e01334-16CrossRefPubMedPubMedCentralGoogle Scholar
  20. Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24(23):2788–2789CrossRefPubMedGoogle Scholar
  21. Johnson JW, Cunfer BM, Morey DD (1987) Inheritance of resistance to Xanthomonas campestris pv. translucens in triticale. Euphytica 36:603–607CrossRefGoogle Scholar
  22. Johnson JW, Cunfer BM, Rothrock CS, Bruckner PL, Raymer PL, Roberts JJ (1989) Registration of GA21 and GA22 bacterial leaf streak resistant triticale germplasm line. Crop Sci 29:1585CrossRefGoogle Scholar
  23. Kandel YR, Glover KD, Tande CA, Osborne LE (2012) Evaluation of spring wheat germplasm for resistance to bacterial leaf streak caused by Xanthomonas campestris pv. translucens. Plant Dis 96:1743–1748CrossRefGoogle Scholar
  24. Kandel YR, Glover KD, Osborne LE, Gonzalez-Hernandez JL (2015) Mapping quantitative resistance loci for bacterial leaf streak disease in hard red spring wheat using an identity by descent mapping approach. Euphytica 201:53–65CrossRefGoogle Scholar
  25. Kariyawasam GK, Carter AH, Rasmussen JB, Faris JD, Xu SS, Mergoum M, Liu ZH (2016) Genetic relationships between race-nonspecific and race-specific interactions in the wheat–Pyrenophora tritici-repentis pathosystem. Theor Appl Genet 129:897–908CrossRefPubMedGoogle Scholar
  26. Khlestkina EK, Than MH, Pestsova EG, Röder MS, Malyshev SV, Korzun V, Börner A (2004) Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor Appl Genet 109:725–732CrossRefPubMedGoogle Scholar
  27. Korzun V, Malyshev S, Voylokov AV, Börner A (2001) A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor Appl Genet 102:709–717CrossRefGoogle Scholar
  28. Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:592–597Google Scholar
  29. Kuleung C, Baenziger PS, Kachman SD, Dweikat I (2006) Evaluating the genetic diversity of triticale with wheat and rye SSR markers. Crop Sci 46:1692–1700CrossRefGoogle Scholar
  30. Kumar S, Kumar N, Balyan HS, Gupta PK (2003) 1BL.1RS translocation in some indian bread wheat genotypes and strategies for its use in future wheat breeding. Caryologia 56:23–30CrossRefGoogle Scholar
  31. Langlois PA, Snelling J, Hamilton JP, Bragard C, Koebnik R, Verdier V, Triplett LR, Blom J, Tisserat NA, Leach JE (2017) Characterization of the Xanthomonas translucens complex using draft genomes, comparative genomics, phylogenetic analysis and diagnostic LAMP assays. Phytopathology 107:519–527CrossRefPubMedGoogle Scholar
  32. Long YM, Chao WS, Ma GJ, Xu SS, Qi LL (2017) An innovative SNP genotyping method adapting to multiple platforms and throughputs. Theor Appl Genet 130:597–607CrossRefPubMedGoogle Scholar
  33. Lorieux M (2012) MapDisto: fast and efficient computation of genetic linkage maps. Mol Breeding 30(2):1231–1235CrossRefGoogle Scholar
  34. Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9:e1003215CrossRefPubMedPubMedCentralGoogle Scholar
  35. Matos M, Pérez-Flores V, Camacho MV, Pernaute B, Pinto-Carnide O, Benito C (2007) Detection and mapping of SSRs in rye ESTs from aluminum-stressed roots. Mol Breed 20:103–115CrossRefGoogle Scholar
  36. Milus EA, Mirlohi AF (1995) Survival of Xanthomonas campestris pv. translucens between successive wheat crops in Arkansas. Plant Dis 79:263–265CrossRefGoogle Scholar
  37. Pallotta MA, Warner P, Fox RL, Kuchel H, Jefferies SJ, Langridge P (2003) Marker assisted wheat breeding in the southern region of Australia. In: Pogna NE (ed) Proceedings of the 10th International Wheat Genetics Symposium, Paestum, Italy, 1-6 September 2003, Istituto Sperimentale per la Cerealicoltura, Rome, Paestum, Italy, pp 789–791Google Scholar
  38. Peng Z, Hu Y, Xie Z, Potnis N, Akhunova A, Jones J, Liu Z, White F, Liu S (2016) Long read and single molecule DNA sequencing simplifies genome assembly and TAL effector gene analysis of Xanthomonas translucens. BMC Genom 17:21.  https://doi.org/10.1186/s12864-015-2348-9 CrossRefGoogle Scholar
  39. Pesce C, Bolot S, Cunnac S, Portier P, Fischer-Le Saux M, Jacques MA, Gagnevin L, Arlat M, Noël LD, Carrère S, Bragard C, Koebnik R (2015) High quality draft genome sequence of the Xanthomonas translucens pv. cerealis pathotype strain CFBP 2541. Genome Announc 3:e01574-14CrossRefPubMedPubMedCentralGoogle Scholar
  40. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253CrossRefPubMedPubMedCentralGoogle Scholar
  41. Qualset CO, Vogt HE, Gustafson JP, Zillinsky FJ, Prato JD, Beatty KD (1985) Registration of Siskiyou triticale. Crop Sci 25:887CrossRefGoogle Scholar
  42. Rabinovich SV (1998) Importance of wheat–rye translocations for breeding modern cultivars of Triticum aestivum L. Euphytica 100:323–340CrossRefGoogle Scholar
  43. Saal B, Wricke G (1999) Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42:964–972CrossRefPubMedGoogle Scholar
  44. Sapkota S, Zhang Q, Mergoum M, Xu SS, Liu ZH (2017) Evaluation of triticale accessions for resistance to wheat bacterial leaf streak caused by Xanthomonas translucens pv. undulosa. Plant Pathol.  https://doi.org/10.1111/ppa.12768 (in press)
  45. Sears ER (1982) A wheat mutation conditioning an intermediate level of homoeologous chromosome pairing. Can J Genet Cytol 24:715–719CrossRefGoogle Scholar
  46. Shane WW, Baumer JS, Teng PS (1987) Crop losses caused by Xanthomonas streak on spring wheat and barley. Plant Dis 71:927–930CrossRefGoogle Scholar
  47. Sun H (2016) Development and application of chromosome specific markers of Secale cereale cv. Jingzhouheimai. Master’s thesis, Nanjing Agricultural University, ChinaGoogle Scholar
  48. Tenhola-Roininen T, Kalendar R, Schulman AH, Tanhuanpää P (2011) A double haploid rye linkage map with a QTL affecting α-amylase activity. J Appl Genet 52:299–304CrossRefPubMedGoogle Scholar
  49. Tillman BL, Harrison SA (1996) Heritability of resistance to bacterial streak in winter wheat. Crop Sci 36:412–418CrossRefGoogle Scholar
  50. Tillman BL, Harrison SA, Clark CA, Milus EA, Russin JS (1996) Evaluation of bread wheat germplasm for resistance to bacterial streak. Crop Sci 36:1063–1068CrossRefGoogle Scholar
  51. Tillman BL, Kursell WS, Harrison SA, Russin JS (1999) Yield loss caused by bacterial streak in winter wheat. Plant Dis 83:609–614CrossRefGoogle Scholar
  52. Vauterin L, Yang P, Hoste B, Pot B, Swings J, Kersters K (1992) Taxonomy of xanthomonads from cereals and grasses based on SDS-PAGE of proteins, fatty acid analysis and DNA hybridization. J Gen Microbiol 138:1467–1477CrossRefGoogle Scholar
  53. Vauterin L, Hoste B, Kersters K, Swings J (1995) Reclassification of Xanthomonas. Int J Syst Bacteriol 45:472–489CrossRefGoogle Scholar
  54. Waldron LR (1929) The relationship of black chaff disease of wheat to certain physical and pathological characters. Science 70:268CrossRefPubMedGoogle Scholar
  55. Wichmann F, Vorholter FJ, Hersemann L, Widmer L, Bolm J, Niehaus K, Reinhard S, Conradin C, Kolliker R (2013) The noncanonical type III secretion system of Xanthomonas translucens pv. graminis is essential for forage grass infection. Mol Plant Pathol 14:576–588CrossRefPubMedGoogle Scholar
  56. Yang B, White FF (2004) Diverse members of the AvrBs3/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice. Mol Plant Microbe Interact 17(11):1192–1200CrossRefPubMedGoogle Scholar
  57. Zeller FJ, Hsam SLK (1983) Broaden the genetic variability of cultivated wheat by utilizing rye chromatin. In: Proceedings of 6th international wheat genetic symposium. Kyoto, Japan, pp 161–173Google Scholar
  58. Zhong S, Leng Y, Friesen TL, Faris JD, Szabo LJ (2009) Development and characterization of expressed sequence tag-derived microsatellite markers for the wheat stem rust fungus Puccinia graminis f. sp. tritici. Phytopathology 99:282–289CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Plant PathologyNorth Dakota State UniversityFargoUSA
  2. 2.Department of Plant SciencesNorth Dakota State UniversityFargoUSA
  3. 3.Department of Plant PathologyKansas State UniversityManhattanUSA
  4. 4.Department of Plant PathologyUniversity of FloridaGainesvilleUSA
  5. 5.Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant ScienceCornell UniversityIthacaUSA

Personalised recommendations