Advertisement

Theoretical and Applied Genetics

, Volume 131, Issue 3, pp 637–648 | Cite as

Characterisation of a novel quantitative trait locus, GN4-1, for grain number and yield in rice (Oryza sativa L.)

  • Yong Zhou
  • Yajun Tao
  • Yuan Yuan
  • Yanzhou Zhang
  • Jun Miao
  • Ron Zhang
  • Chuandeng Yi
  • Zhiyun Gong
  • Zefeng Yang
  • Guohua Liang
Original Article

Abstract

Key message

A novel QTL for grain number, GN4-1, was identified and fine-mapped to an ~ 190-kb region on the long arm of rice chromosome 4.

Abstract

Rice grain yield is primarily determined by three components: number of panicles per plant, grain number per panicle and grain weight. Among these traits, grain number per panicle is the major contributor to grain yield formation and is a crucial trait for yield improvement. In this study, we identified a major quantitative trait locus (QTL) responsible for rice grain number on chromosome 4, designated GN4-1 (a QTL for Grain Number on chromosome 4), using advanced segregating populations derived from the crosses between an elite indica cultivar ‘Zhonghui 8006’ (ZH8006) and a japonica rice ‘Wuyunjing 8’ (WYJ8). GN4-1 was delimited to an ~ 190-kb region on chromosome 4. The genetic effect of GN4-1 was estimated using a pair of near-isogenic lines. The GN4-1 gene from WYJ8 promoted accumulation of cytokinins in the inflorescence and increased grain number per panicle by ~ 17%. More importantly, introduction of the WYJ8 GN4-1 gene into ZH8006 increased grain yield by ~ 14.3 and ~ 11.5% in the experimental plots in 2014 and 2015, respectively. In addition, GN4-1 promoted thickening of the culm and may enhance resistance to lodging. These results demonstrate that GN4-1 is a potentially valuable gene for improvement of yield and lodging resistance in rice breeding.

Notes

Acknowledgements

This study was financially supported by grants from the National Key Research and Development Programme (2016YFD0100400), the National Natural Science Foundation of China (31100863), the Key Research and Development Programme of Jiangsu Province (BE2015341), the Natural Science Foundation of Jiangsu Province (BK20150010), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (13KJA210003), the Prospective Agricultural Project of Yangzhou City (YZ2014165), the Top Talent Support Programme of Yangzhou University and the Priority Academic Programme Development of Jiangsu Higher Education Institutions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

We declare that these experiments comply with the ethical standards in China, where they were performed.

Supplementary material

122_2017_3025_MOESM1_ESM.pdf (64 kb)
Table S1 Predicted genes within the region between markers RM17108 and GN2-80 on chromosome 4. (PDF 63 kb)
122_2017_3025_MOESM2_ESM.pdf (32 kb)
Fig. S1. Frequency distribution of grain number per panicle in a BC5F3 segregating population. (PDF 32 kb)

References

  1. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745CrossRefPubMedGoogle Scholar
  2. Chen J, Gao H, Zheng XM, Jin M, Weng JF, Ma J, Ren Y, Zhou K, Wang Q, Wang J, Wang JL, Zhang X, Cheng Z, Wu C, Wang H, Wan JM (2015) An evolutionarily conserved gene, FUWA, plays a role in determining panicle architecture, grain shape and grain weight in rice. Plant J 83:427–438CrossRefPubMedGoogle Scholar
  3. Deshmukh R, Singh A, Jain N, Anand S, Gacche R, Gaikwad K, Sharma T, Mohapatra T, Singh N (2010) Identification of candidate genes for grain number in rice (Oryza sativa L.). Funct Integr Genomic 10:339–347CrossRefGoogle Scholar
  4. Duan CR, Wang BC, Wang PQ, Wang DH, Cai SX (2004) Relationship between the minute structure and the lodging resistance of rice stems. Colloid Surf B 35:155–158CrossRefGoogle Scholar
  5. Fujita D, Trijatmiko KR, Tagle AG, Sapasap MV, Koide Y, Sasaki K, Tsakirpaloglou N, Gannaban RB, Nishimura T, Yanagihara S, Fukuta Y, Koshiba T, Slamet-Loedin IH, Ishimaru T, Kobayashi N (2013) NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. Proc Natl Acad Sci USA 110:20431–20436CrossRefPubMedPubMedCentralGoogle Scholar
  6. Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818CrossRefPubMedGoogle Scholar
  7. Gu B, Zhou T, Luo J, Liu H, Wang Y, Shangguan Y, Zhu J, Li Y, Sang T, Wang Z, Han B (2015) An-2 encodes a cytokinin synthesis enzyme that regulates awn length and grain production in rice. Mol Plant 8:1635–1650CrossRefPubMedGoogle Scholar
  8. Han Y, Yang H, Jiao Y (2014) Regulation of inflorescence architecture by cytokinins. Front Plant Sci 5:669PubMedPubMedCentralGoogle Scholar
  9. Huang RY, Jiang LR, Zheng JS, Wang TS, Wang HC, Huang YM, Hong ZL (2013) Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci 18:218–226CrossRefPubMedGoogle Scholar
  10. Hwang I, Sheen J, Müller B (2012) Cytokinin signaling networks. Annu Rev Plant Biol 63:353–380CrossRefPubMedGoogle Scholar
  11. Ikeda K, Nagasawa N, Nagato Y (2005) ABERRANT PANICLE ORGANIZATION 1 temporally regulates meristem identity in rice. Dev Biol 282:349–360CrossRefPubMedGoogle Scholar
  12. Islam MS, Peng SB, Visperas RM, Ereful N, Bhuiya MSU, Julfiquar AW (2007) Lodging-related morphological traits of hybrid rice in a tropical irrigated ecosystem. Field Crop Res 101:240–248CrossRefGoogle Scholar
  13. Jiang G, Xiang Y, Zhao J, Yin D, Zhao X, Zhu L, Zhai W (2014) Regulation of inflorescence branch development in rice through a novel pathway involving the pentatricopeptide repeat protein sped1-D. Genetics 197:1395–1407CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544CrossRefPubMedGoogle Scholar
  15. Komatsu M, Maekawa M, Shimamoto K, Kyozuka J (2001) The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development. Dev Biol 231:364–373CrossRefPubMedGoogle Scholar
  16. Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J (2003) FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130:3841–3850CrossRefPubMedGoogle Scholar
  17. Li SB, Qian Q, Fu ZM, Zeng DL, Meng XB, Kyozuka J, Maekawa M, Zhu XD, Zhang J, Li JY, Wang YH (2009) Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Plant J 58:592–605CrossRefPubMedGoogle Scholar
  18. Li F, Liu WB, Tang JY, Chen JF, Tong HN, Hu B, Li CL, Fang J, Chen MS, Chu CC (2010) Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Res 20:838–849CrossRefPubMedGoogle Scholar
  19. Li S, Zhao B, Yuan D, Duan M, Qian Q, Tang L, Wang B, Liu X, Zhang J, Wang J, Sun J, Liu Z, Feng YQ, Yuan L, Li C (2013) Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Natl Acad Sci USA 110:3167–3172CrossRefPubMedPubMedCentralGoogle Scholar
  20. Liu Z, Wei F, Feng YQ (2010) Determination of cytokinins in plant samples by polymer monolith microextraction coupled with hydrophilic interaction chromatography-tandem mass spectrometry. Anal Methods UK 2:1676–1685CrossRefGoogle Scholar
  21. Liu J, Shen J, Xu Y, Li X, Xiao J, Xiong L (2016) Ghd2, a CONSTANS-like gene, confers drought sensitivity through regulation of senescence in rice. J Exp Bot 67:5785–5798CrossRefPubMedPubMedCentralGoogle Scholar
  22. Luo J, Liu H, Zhou T, Gu B, Huang X, Shangguan Y, Zhu J, Li Y, Zhao Y, Wang Y, Zhao Q, Wang A, Wang Z, Sang T, Han B (2013) An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell 25:3360–3376CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ma XF, Cheng ZJ, Qin RZ, Qiu Y, Heng YQ, Yang H, Ren YL, Wang XL, Bi JC, Ma XD, Zhang X, Wang JL, Lei CL, Guo XP, Wang J, Wu FQ, Jiang L, Wang HY, Wan JM (2013) OsARG encodes an arginase that plays critical roles in panicle development and grain production in rice. Plant J 73:190–200CrossRefPubMedGoogle Scholar
  24. Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42:545–549CrossRefPubMedGoogle Scholar
  25. Miura K, Ashikari M, Matsuoka M (2011) The role of QTLs in the breeding of high-yielding rice. Trends Plant Sci 16:319–326CrossRefPubMedGoogle Scholar
  26. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ni DH, Li J, Duan YB, Yang YC, Wei PC, Xu RF, Li CR, Liang DD, Li H, Song FS, Ni JL, Li L, Yang JB (2014) Identification and utilization of cleistogamy gene cl7(t) in rice (Oryza sativa L.). J Exp Bot 65:2107–2117CrossRefPubMedGoogle Scholar
  28. Okuno A, Hirano K, Asano K, Takase W, Masuda R, Morinaka Y, Ueguchi-Tanaka M, Kitano H, Matsuoka M (2014) New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties. PLoS One 9:e86870CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Asano K, Ochiai Y, Ikeda M, Nishitani R, Ebitani T, Ozaki H, Angeles ER, Hirasawa T, Matsuoka M (2010) New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Commun 1:132CrossRefPubMedPubMedCentralGoogle Scholar
  30. Panaud O, Chen X, McCouch SR (1996) Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 252:597–607PubMedGoogle Scholar
  31. Perilli S, Moubayidin L, Sabatini S (2010) The molecular basis of cytokinin function. Curr Opin Plant Biol 13:21–26CrossRefPubMedGoogle Scholar
  32. Qiao Y, Piao R, Shi J, Lee SI, Jiang W, Kim BK, Lee J, Han LZ, Ma WB, Koh HJ (2011) Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theor Appl Genet 122:1439–1449CrossRefPubMedGoogle Scholar
  33. Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449.  https://doi.org/10.1146/annurev.arplant.57.032905.105231 CrossRefPubMedGoogle Scholar
  34. Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu-Sato S, Oikawa T, Qian Q, Nishimura M, Kitano H, Xie H, Fang X, Yoshida H, Kyozuka J, Chen F, Sato Y (2011) LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. Plant Cell 23:3276–3287.  https://doi.org/10.1105/tpc.111.088765 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Wang S, Basten C, Zeng Z (2006) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm. Accessed 15 Aug 2012
  36. Wu S, Zhong H, Zhou Y, Zuo H, Zhou L, Zhu J, Ji C, Gu S, Gu M, Liang G (2009) Identification of QTLs for the resistance to rice stripe virus in the indica rice variety Dular. Euphytica 165:557–565CrossRefGoogle Scholar
  37. Wu Y, Wang Y, Mi XF, Shan JX, Li XM, Xu JL, Lin HX (2016) The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems. PLoS Genet 12:e1006386CrossRefPubMedPubMedCentralGoogle Scholar
  38. Xue WY, Xing YZ, Weng XY, Zhao Y, Tang WJ, Wang L, Zhou HJ, Yu SB, Xu CG, Li XH, Zhang QF (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767CrossRefPubMedGoogle Scholar
  39. Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang QF (2011) A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant 4:319–330CrossRefPubMedGoogle Scholar
  40. Yoshida A, Sasao M, Yasuno N, Takagi K, Daimon Y, Chen R, Yamazaki R, Tokunaga H, Kitaguchi Y, Sato Y, Nagamura Y, Ushijima T, Kumamaru T, Iida S, Maekawa M, Kyozuka J (2013) TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition. Proc Natl Acad Sci USA 110:767–772CrossRefPubMedGoogle Scholar
  41. Zhang GH, Li SY, Wang L, Ye WJ, Zeng DL, Rao YC, Peng YL, Hu J, Yang YL, Xu J, Ren DY, Gao ZY, Zhu L, Dong GJ, Hu XM, Yan MX, Guo LB, Li CY, Qian Q (2014) LSCHL4 from japonica cultivar, which is allelic to NAL1, increases yield of indica super rice 93-11. Mol Plant 7:1350–1364CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zhang WJ, Wu LM, Wu XR, Ding YF, Li GH, Li JY, Weng F, Liu ZH, Tang S, Ding CQ, Wang SH (2016) Lodging resistance of japonica rice (Oryza Sativa L.): morphological and anatomical traits due to top-dressing nitrogen application rates. Rice 9:31CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yong Zhou
    • 1
  • Yajun Tao
    • 1
  • Yuan Yuan
    • 1
  • Yanzhou Zhang
    • 1
  • Jun Miao
    • 1
  • Ron Zhang
    • 1
  • Chuandeng Yi
    • 1
  • Zhiyun Gong
    • 1
  • Zefeng Yang
    • 1
  • Guohua Liang
    • 1
  1. 1.Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Centre for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of EducationYangzhou UniversityYangzhouChina

Personalised recommendations