Skip to main content

Advertisement

Log in

Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean

Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A novel Phytophthora sojae resistance gene RpsHC18 was identified and finely mapped on soybean chromosome 3. Two NBS–LRR candidate genes were identified and two diagnostic markers of RpsHC18 were developed.

Abstract

Phytophthora root rot caused by Phytophthora sojae is a destructive disease of soybean. The most effective disease-control strategy is to deploy resistant cultivars carrying Phytophthora-resistant Rps genes. The soybean cultivar Huachun 18 has a broad and distinct resistance spectrum to 12 P. sojae isolates. Quantitative trait loci sequencing (QTL-seq), based on the whole-genome resequencing (WGRS) of two extreme resistant and susceptible phenotype bulks from an F2:3 population, was performed, and one 767-kb genomic region with ΔSNP-index ≥ 0.9 on chromosome 3 was identified as the RpsHC18 candidate region in Huachun 18. The candidate region was reduced to a 146-kb region by fine mapping. Nonsynonymous SNP and haplotype analyses were carried out in the 146-kb region among ten soybean genotypes using WGRS. Four specific nonsynonymous SNPs were identified in two nucleotide-binding sites–leucine-rich repeat (NBS–LRR) genes, RpsHC18-NBL1 and RpsHC18-NBL2, which were considered to be the candidate genes. Finally, one specific SNP marker in each candidate gene was successfully developed using a tetra-primer ARMS-PCR assay, and the two markers were verified to be specific for RpsHC18 and to effectively distinguish other known Rps genes. In this study, we applied an integrated genomic-based strategy combining WGRS with traditional genetic mapping to identify RpsHC18 candidate genes and develop diagnostic markers. These results suggest that next-generation sequencing is a precise, rapid and cost-effective way to identify candidate genes and develop diagnostic markers, and it can accelerate Rps gene cloning and marker-assisted selection for breeding of P. sojae-resistant soybean cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T et al (2008) Two adjacent nucleotide-binding site–leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180:2267–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernard RL, Smith PE, Kaufmann MJ, Schmitthenner AF (1957) Inheritance of resistance to Phytophthora root and stem rot in soybean. Agron J 49:391

    Article  Google Scholar 

  • Bhattacharyya MK, Narayanan NN, Gao H, Santra DK, Salimath SS, Kasuga T et al (2005) Identification of a large cluster of coiled coil-nucleotide binding site–leucine rich repeat-type genes from the Rps1 region containing Phytophthora resistance genes in soybean. Theor Appl Genet 111:75–86

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Ma Q, Ren H, Xia Q, Song E, Tan Z et al (2017) Fine mapping of a Phytophthora-resistance gene RpsWY in soybean (Glycine max L.) by high-throughput genome-wide sequencing. Theor Appl Genet 130:1041–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins A, Ke X (2012) Primer1: primer design web service for tetra-primer ARMS-PCR. Open Bioinform J 6:55–58

    Article  Google Scholar 

  • Cui L, Yin W, Tang Q, Dong S, Zheng X, Zhang Z, Wang Y (2010) Distribution, pathotypes, and metalaxyl sensitivity of Phytophthora sojae from Heilongjiang and Fujian provinces in China. Plant Dis 94:881–884

    Article  Google Scholar 

  • Das S, Upadhyaya HD, Bajaj D, Kujur A, Badoni S, Laxmi Kumar V et al (2015) Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res 22:193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demirbas A, Rector BG, Lohnes DG, Fioritto RJ, Graef GL, Cregand PB et al (2001) Simple sequence repeat markers linked to the soybean genes for Phytophthora resistance. Crop Sci 41:1220–1227

    Article  CAS  Google Scholar 

  • Dorrance AE, McClure SA, DeSilva A (2003a) Pathogenic diversity of Phytophthora sojae in Ohio soybean fields. Plant Dis 87:139–146

    Article  Google Scholar 

  • Dorrance AE, McClure SA, St. Martin SK (2003b) Effect of partial resistance on Phytophthora stem rot incidence and yield of soybean in Ohio. Plant Dis 87:308–312

    Article  Google Scholar 

  • Dorrance AE, Jia H, Abney TS (2004) Evaluation of soybean differentials for their interaction with Phytophthora sojae. Plant Health Prog. https://doi.org/10.1094/PHP-2004-0309-01-RS

    Google Scholar 

  • Dorrance AE, Berry SA, Anderson TR, Meharg C (2008) Isolation, storage, pathotype characterization, and evaluation of resistance for Phytophthora sojae in soybean. Plant Health Prog 10:1094

    Google Scholar 

  • Fan A, Wang X, Fang X, Wu X, Zhu Z (2009) Molecular identification of Phytophthora resistance gene in soybean cultivar Yudou 25. Acta Agron Sin 35:1844–1850

    Article  CAS  Google Scholar 

  • Gao H, Bhattacharyya MK (2008) The soybean-Phytophthora resistance locus Rps1-k encompasses coiled coil-nucleotide binding leucine rich repeat-like genes and repetitive sequences. BMC Plant Biol 8:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao H, Narayanan NN, Ellison L, Bhattacharyya MK (2005) Two classes of highly similar coiled coil-nucleotide binding-leucine rich repeat genes isolated from the Rps1-k locus encode Phytophthora resistance in soybean. Mol Plant Microbe Interact 18:1035–1045

    Article  CAS  PubMed  Google Scholar 

  • Gordon SG, St Martin SK, Dorrance AE (2006) Rps8 maps to a resistance gene rich region on soybean molecular linkage group F. Crop Sci 46:168–173

    Article  CAS  Google Scholar 

  • Graham MA, Marek LF, Lohnes D, Cregan P, Shoemaker RC (2000) Expression and genome organization of resistance gene analogs in soybean. Genome 43:86–93

    Article  CAS  PubMed  Google Scholar 

  • Graham MA, Marek LF, Shoemaker RC (2002) PCR sampling of disease resistance-like sequences from a disease resistance gene cluster in soybean. Theor Appl Genet 105:50–57

    Article  CAS  PubMed  Google Scholar 

  • Grant D, Nelson RT, Cannon SB, Shoemaker RC (2009) SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res 38:843–846

    Article  Google Scholar 

  • Grau CR, Dorrance AE, Bond J, Russin JS (2004) Fungal diseases. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses, 3rd edn, pp 679–763. Agronomy Monograph no. 16

  • Illa-Berenguer E, Van Houten J, Huang Z, van der Knaap E (2015) Rapidand reliable identification of tomato fruit weight and locule number loci byQTL-seq. Theor Appl Genet 128:1329–1342

    Article  PubMed  Google Scholar 

  • Juwattanasomran R, Somta P, Kaga A, Chankaew S, Shimizu T, Sorajjapinun W, Srinives P (2012) Identification of a new fragrance allele in soybean and development of its functional marker. Mol Breed 29:13–21

    Article  CAS  Google Scholar 

  • Kamoun S, Furzer O, Jones JD, Judelson HS, Ali GS, Dalio RJ et al (2015) The top 10 oomycete pathogens in molecular plant pathology. Mol Plant Pathol 16:413–434

    Article  PubMed  Google Scholar 

  • Kasuga T, Salimath SS, Shi J, Gijzen M, Buzzell RI, Bhattacharyya MK (1997) High resolution genetic and physical mapping of molecular markers linked to the Phytophthora resistance gene Rps1-k in soybean. Mol Plant Microbe Interact 10:1035–1044

    Article  CAS  Google Scholar 

  • Kaufmann M, Gerdemann J (1958) Root and stem rot of soybean caused by Phytophthora sojae n. sp. Phytopathology 48:201–208

    Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Lin F, Wang W, Ping J, Fitzgerald J, Zhao M, Li S, Sun L, Cai C, Ma J (2016) Fine mapping and candidate gene analysis of two loci conferring resistance to Phytophthora sojae in soybean. Theor Appl Genet 129:2379–2386

    Article  CAS  PubMed  Google Scholar 

  • Li B, Zhao Y, Zhu Q, Zhang Z, Fan C, Amanullah S et al (2017a) Mapping of powdery mildew resistance genes in melon (Cucumis melo L.) by bulked segregant analysis. Sci Hortic 220:160–167

    Article  CAS  Google Scholar 

  • Li Y, Sun S, Zhong C, Wang X, Wu X, Zhu Z (2017b) Genetic mapping and development of co-segregating markers of RpsQ, which provides resistance to Phytophthora sojae in soybean. Theor Appl Genet 130:1223–1233

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Zhao M, Ping J, Johnson A, Zhang B, Abney TS, Hughes TJ, Ma J (2013) Molecular mapping of two genes conferring resistance to Phytophthora sojae in a soybean landrace PI 567139B. Theor Appl Genet 126:2177–2185

    Article  CAS  PubMed  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1993) Constructing genetic maps with MAPMAKER/EXP version 3.0: a tutorial and reference manual. Technical report, 3rd edn. Whitehead Institute for Biomedical Research, Cambridge, p 97

    Google Scholar 

  • Liu RH, Meng JL (2003) MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas 25:317–321

    PubMed  Google Scholar 

  • Liu Y, He Z, Appels R, Xia X (2012) Functional markers in wheat: current status and future prospects. Theor Appl Genet 125:1–10

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J et al (2014) QTL-seq identifies an early flowering QTL located near flowering locus T incucumber. Theor Appl Genet 127:1491–1499

    Article  PubMed  Google Scholar 

  • Marone D, Russo MA, Laidò G, De Leonardis AM, Mastrangelo AM (2013) Plant nucleotide binding site–leucine-rich repeat (NBS–LRR) genes: active guardians in host defense responses. Int J Mol Sci 14:7302–7326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130

    Article  CAS  PubMed  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy ED, Bennetzen JL (2008) Pathogen corruption and site-directed recombination at a plant disease resistance gene cluster. Genome Res 18:1918–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu J, Guo N, Sun J, Li L, Cao Y, Li S et al (2017) Fine mapping of a resistance gene RpsHN that controls Phytophthora sojae using recombinant inbred lines and secondary populations. Front Plant Sci 8:538

    PubMed  PubMed Central  Google Scholar 

  • Pandey MK, Khan AW, Singh VK, Vishwakarma MK, Shasidhar Y, Kumar V et al (2016) QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnol. https://doi.org/10.1111/pbi.12686

    Google Scholar 

  • Ping J, Fitzgerald JC, Zhang C, Lin F, Bai Y, Wang D, Aggarwal R, Rehman M, Crasta O, Ma J (2016) Identification and molecular mapping of Rps11, a novel gene conferring resistance to Phytophthora sojae in soybean. Theor Appl Genet 129:445–451

    Article  CAS  PubMed  Google Scholar 

  • Ramkumar G, Prahalada GD, Hechanova SL, Vinarao R, Jena KK (2015) Development and validation of SNP-based functional codominant markers for two major disease resistance genes in rice (O. sativa L.). Mol Breed 35:1–11

    Article  CAS  Google Scholar 

  • Sahoo DK, Abeysekara NS, Cianzio SR, Robertson AE, Bhattacharyya MK (2017) A Novel Phytophthora sojae Resistance Rps12 Gene Mapped to a Genomic Region That Contains Several Rps Genes. PLoS One 12:e0169950

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandhu D, Schallock KG, Rivera-Velez N, Lundeen P, Cianzio S, Bhattacharyya MK (2005) Soybean Phytophthora resistance gene Rps8 maps closely to the Rps3 region. J Hered 96:536–541

    Article  CAS  PubMed  Google Scholar 

  • Scheben A, Batley J, Edwards D (2016) Genotyping by sequencing approaches to characterise crop genomes: choosing the right tool for the right application. Plant Biotechnol J 15:149–161

    Article  Google Scholar 

  • Schmitthenner AF (1985) Problems and progress in control of Phytophthora root rot of soybean. Plant Dis 69:362–368

    Article  Google Scholar 

  • Schmitthenner AF (1999) Phytophthora rot of soybean. Compendium of soybean diseases, 4th edn. The American Phytopathological Society Press, St. Paul, pp 39–42

    Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Shao ZQ, Xue JY, Wu P, Zhang YM, Wu Y, Hang YY, Chen JQ (2016) Large-scale analyses of angiosperm nucleotide-binding site–leucine-rich repeat (NBS–LRR) genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiol 170:2095–2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva J, Scheffler B, Sanabria Y, De Guzman C, Galam D, Farmer A, Woodward J, May G, Oard J (2012) Identification of candidate genes in rice for resistance to sheath blight disease by whole genome sequencing. Theor Appl Genet 124:63–74

    Article  CAS  PubMed  Google Scholar 

  • Singh VK, Khan AW, Jaganathan D, Thudi M, Roorkiwal M, Takagi H, Garg V et al (2016a) QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol J 14:2110–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh VK, Khan AW, Saxena RK, Kumar V, Kale SM, Sinha P, Chitikineni A et al (2016b) Next-generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan). Plant Biotechnol J 14:1183–1194

    Article  CAS  PubMed  Google Scholar 

  • Song Q, Jia G, Zhu Y, Grant D, Nelson RT, Hwang EY, Hyten DL, Cregan PB (2010) Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1.0) in soybean. Crop Sci 50:1950–1960

    Article  CAS  Google Scholar 

  • Song Q, Jenkins J, Jia G, Hyten DL, Pantalone V, Jackson SA et al (2016) Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1. 01. BMC Genom 17:33

    Article  Google Scholar 

  • Stewart S, Abeysekara N, Robertson AE (2014) Pathotype and genetic shifts in a population of Phytophthora sojae under soybean cultivar rotation. Plant Dis 98:614–624

    Article  CAS  Google Scholar 

  • Stewart S, Robertson AE, Wickramasinghe D, Draper MA, Michel A, Dorrance AE (2016) Population structure among and within Iowa, Missouri, Ohio, and South Dakota populations of Phytophthora sojae. Plant Dis 100:367–379

    Article  CAS  Google Scholar 

  • Sugimoto T, Yoshida S, Watanabe K, Aino M, Kanto T, Maekawa K, Irie K (2008) Identification of SSR markers linked to the Phytophthora resistance gene Rps1-d in soybean. Plant Breeding 127:154–159

    Article  CAS  Google Scholar 

  • Sugimoto T, Yoshida S, Kaga A, Hajika M, Watanabe K, Aino M, Tatsuda K, Yamamoto R, Matoh T, Walker DR, Biggs AR, Ishimoto M (2011) Genetic analysis and identification of DNA markers linked to a novel Phytophthora sojae resistance gene in the Japanese soybean cultivar Waseshiroge. Euphytica 182:133–145

    Article  CAS  Google Scholar 

  • Sugimoto T, Kato M, Yoshida S, Matsumoto I, Kobayashi T, Kaga A, Hajika M, Yamamoto R, Watanabe K, Aino M, Matoh T, Walker DR, Biggs AR, Ishimoto M (2012) Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans. Breed Sci 61:511–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S, Wu X, Zhao J, Wang Y, Tang Q, Yu D, Gai J, Xing H (2011) Characterization and mapping of RpsYu25, a novel resistance gene to Phytophthora sojae. Plant Breed 130:139–143

    Article  CAS  Google Scholar 

  • Sun J, Li L, Zhao J, Huang J, Yan Q, Xing H, Guo N (2014) Genetic analysis and fine mapping of RpsJS, a novel resistance gene to Phytophthora sojae in soybean [Glycine max (L.) Merr.]. Theor Appl Genet 127:913–919

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano L, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Tian M, Zhao L, Li S, Huang J, Sui Z, Wen J, Li Y (2016) Pathotypes and metalaxyl sensitivity of Phytophthora sojae and their distribution in Heilongjiang, China 2011–2015. J Gen Plant Pathol 82:132–141

    Article  CAS  Google Scholar 

  • Tooley PW, Grau CR (1984) The relationship between rate-reducing resistance to Phytophthora megasperma f. sp. glycinea and yield of soybean. Phytopathol 74:1209–1216

    Article  Google Scholar 

  • Wallace JG, Mitchell SE (2017) Genotyping-by-sequencing. Curr Protoc. Plant Biol 2:64–77

    Google Scholar 

  • Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:164

    Article  CAS  Google Scholar 

  • Wei K, Shamsi IH, Zhang G (2007) Synergistic interaction of NaCl and Cd on growth and photosynthetic parameters in soybean genotypes differing in salinity tolerance. J Zhejiang Univ Sci B 8:266–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng C, Yu K, Anderson TR, Poysa V (2001) Mapping genes conferring resistance to Phytophthora root rot of soybean, Rps1a and Rps7. J Hered 92:442–446

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Zhang B, Sun S, Zhao J, Yang F, Guo N, Gai J, Xing H (2011) Identification, genetic analysis and mapping of resistance to Phytophthora sojae of Pm28 in soybean. Agr Sci China 10:1506–1511

    Article  CAS  Google Scholar 

  • Wu M, Li B, Liu P, Weng Q, Zhan J, Chen Q (2016) Population genetic analyses of Phytophthora sojae in Fujian, China. Plant Pathol. https://doi.org/10.1111/ppa.12666

    Google Scholar 

  • Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu X, Bai G (2015) Whole-genome resequencing: changing the paradigms of SNP detection, molecular mapping and gene discovery. Mol Breed 35:1–11

    Article  Google Scholar 

  • Xue AG, Marchand G, Chen Y, Zhang S, Cober ER, Tenuta A (2015) Races of Phytophthora sojae in Ontario, Canada, 2010–2012. Can J Plant Pathol 37:376–383

    Article  Google Scholar 

  • Ye S, Dhillon S, Ke X, Collins AR, Day IN (2001) An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res 29:e88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Xu P, Wu J, Zhang J, Li W, Chen C, Chen W, Lv H (2010) Races of Phytophthora sojae and their Virulences on soybean cultivars in Heilongjiang, China. Plant Dis 94:87–91

    Article  Google Scholar 

  • Zhang J, Xia C, Duan C, Sun S, Wang X, Wu X, Zhu Z (2013a) Identification and candidate gene analysis of a novel Phytophthora resistance gene Rps10 in a Chinese soybean cultivar. PLoS One 8:e69799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Xia C, Wang X, Duan C, Sun S, Wu X, Zhu Z (2013b) Genetic characterization and fine mapping of the novel Phytophthora resistance gene in a Chinese soybean cultivar. Theor Appl Genet 126:1555–1561

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Sun S, Wang G, Duan C, Wang X, Wu X, Zhu Z (2014) Characterization of Phytophthora resistance in soybean cultivars/lines bred in Henan province. Euphytica 196:375–384

    Article  Google Scholar 

  • Zhu Z, Wang H, Wang X, Chang R, Wu X (2003) Distribution and virulence diversity of Phytophthora sojae in China. Agric Sci China 3:116–123

    Google Scholar 

  • Zou C, Wang P, Xu Y (2016) Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J. https://doi.org/10.1111/pbi.12559

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Professors Lijuan Qiu and Tianfu Han in the Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Professor Zhiping Huang in Anhui Academy of Agricultural Sciences, and Professor Ran Xu in Shandong Academy of Agricultural Sciences for supplying the soybean cultivars tested in this study. The work was supported by the Special Fund for Agroscientific Research in the Public Interest (201303018), the Program of Protection of Crop Germplasm Resources (2016NWB036-12) from the Ministry of Agriculture of the People’s Republic of China, the National Infrastructure for Crop Germplasm Resources (NICGR2017-008), and the Scientific Innovation Program of Chinese Academy of Agricultural Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhendong Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments were performed in accordance with all relevant Chinese laws.

Additional information

Communicated by Istvan Rajcan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, C., Sun, S., Li, Y. et al. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean. Theor Appl Genet 131, 525–538 (2018). https://doi.org/10.1007/s00122-017-3016-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-3016-z

Navigation