Skip to main content
Log in

Cytogenetic mapping of a major locus for resistance to Fusarium head blight and crown rot of wheat on Thinopyrum elongatum 7EL and its pyramiding with valuable genes from a Th. ponticum homoeologous arm onto bread wheat 7DL

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A major locus for resistance to different Fusarium diseases was mapped to the most distal end of Th. elongatum 7EL and pyramided with Th. ponticum beneficial genes onto wheat 7DL.

Abstract

Perennial Triticeae species of the Thinopyrum genus are among the richest sources of valuable genes/QTL for wheat improvement. One notable and yet unexploited attribute is the exceptionally effective resistance to a major wheat disease worldwide, Fusarium head blight, associated with the long arm of Thinopyrum elongatum chromosome 7E (7EL). We targeted the transfer of the temporarily designated Fhb-7EL locus into bread wheat, pyramiding it with a Th. ponticum 7el1L segment stably inserted into the 7DL arm of wheat line T4. Desirable genes/QTL mapped along the T4 7el1L segment determine resistance to wheat rusts (Lr19, Sr25) and enhancement of yield-related traits. Mapping of the Fhb-7EL QTL, prerequisite for successful pyramiding, was established here on the basis of a bioassay with Fusarium graminearum of different 7EL-7el1L bread wheat recombinant lines. These were obtained without resorting to any genetic pairing promotion, but relying on the close 7EL-7el1L homoeology, resulting in 20% pairing frequency between the two arms. Fhb-7EL resided in the telomeric portion and resistant recombinants could be isolated with useful combinations of more proximally located 7el1L genes/QTL. The transferred Fhb-7EL locus was shown to reduce disease severity and fungal biomass in grains of infected recombinants by over 95%. The same Fhb-7EL was, for the first time, proved to be effective also against F. culmorum and F. pseudograminearum, predominant agents of crown rot. Prebreeding lines possessing a suitable 7EL-7el1L gene/QTL assembly showed very promising yield performance in preliminary field tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AACC International (2013) AACC international official method 14-50.01. In: AACC international approved methods of analysis. 11th edn, St. Paul. http://methods.aaccnet.org/toc.aspx. Accessed 5 Dec 2016. Accessed 5 Dec 2016

  • Ayala-Navarrete L, Bariana HS, Singh RP, Gibson JM, Mechanicos AA, Larkin PJ (2007) Trigenomic chromosomes by recombination of Thinopyrum intermedium and Th. ponticum translocations in wheat. Theor Appl Genet 116:63–75

    Article  CAS  PubMed  Google Scholar 

  • Ayala-Navarrete L, Mechanicos AA, Gibson JM, Singh D, Bariana HS, Fletcher J, Shorter S, Larkin PJ (2013) The Pontin series of recombinant alien translocations in bread wheat: single translocations integrating combinations of Bdv2, Lr19 and Sr25 disease-resistance genes from Thinopyrum intermedium and Th. ponticum. Theor Appl Genet 126:2467–2475

    Article  CAS  PubMed  Google Scholar 

  • Barzman M, Lamichhane JR, Booij K, Boonekamp P, Desneux N, Huber L, Kudsk P, Langrell SRH, Ratnadass A, Ricci P, Sarah J-L, Messean A (2015) Research and development priorities in the face of climate change and rapidly evolving pests. In: Lichtfouse E (ed) Sustainable agriculture reviews 17. Springer International Publishing Switzerland, Switzerland, pp 1–27

    Google Scholar 

  • Bebber DP, Ramotowski MAT, Gurr SJ (2013) Crop pests and pathogens move polewards in a warming world. Nat Clim Change 3:985–988

    Article  Google Scholar 

  • Beccari G, Covarelli L, Nicholson P (2011) Infection processes and soft wheat response to root rot and crown rot caused by Fusarium culmorum. Plant Pathol 60:671–684

    Article  CAS  Google Scholar 

  • Beddington J (2010) Food security: contributions from science to a new and greener revolution. Phil Trans R Soc B 365:61–71

    Article  PubMed  PubMed Central  Google Scholar 

  • Beleggia R, Platani C, Nigro F, Cattivelli L (2010) A micro-method for the determination of yellow pigment content in durum wheat. J Cereal Sci 52:106–110

    Article  CAS  Google Scholar 

  • Boonekamp PM (2012) Are plant diseases too much ignored in the climate change debate? Eur J Plant Pathol 133:291–294

    Article  Google Scholar 

  • Bovill WD, Horne M, Herde D, Davis M, Wildermuth GB, Sutherland MW (2010) Pyramiding QTL increases seedling resistance to crown rot (Fusarium pseudograminearum) of wheat (Triticum aestivum). Theor Appl Genet 121:127–136

    Article  CAS  PubMed  Google Scholar 

  • Brown NA, Urban M, Van De Meene AML, Hammond-Kosack KE (2010) The infection biology of Fusarium graminearum: defining the pathways of spikelet to spikelet colonisation in wheat ears. Fungal Biol 114:555–571

    Article  PubMed  Google Scholar 

  • Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128:1–26

    Article  CAS  Google Scholar 

  • Ceoloni C, Jauhar PP (2006) Chromosome engineering of the durum wheat genome: strategies and applications of potential breeding value. In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering, and crop improvement: cereals. CRC Press, Taylor & Francis Group, Boca Raton, FL, pp 27–59

  • Ceoloni C, Forte P, Ciaffi M, Nenno M, Bitti A, De Vita P, D’Egidio MG (2000) Chromosomally engineered durum wheat: the potential of alien gene introgressions affecting disease resistance and quality. In: Royo C, Nachit MM, Di Fonzo N, Araus JL (eds) Durum wheat improvement in the Mediterranean region: new challenges. Options Méditerranéennes A-40:363–371

  • Ceoloni C, Forte P, Gennaro A, Micali S, Carozza R, Bitti A (2005) Recent developments in durum wheat chromosome engineering. Cytogenet Genome Res 109:328–344

    Article  CAS  PubMed  Google Scholar 

  • Ceoloni C, Kuzmanović L, Forte P, Gennaro A, Bitti A (2014a) Targeted exploitation of gene pools of alien Triticeae species for sustainable and multi-faceted improvement of the durum wheat crop. Crop Pasture Sci 65:96–111

    Google Scholar 

  • Ceoloni C, Kuzmanović L, Gennaro A, Forte P, Giorgi D, Grossi MR, Bitti A (2014b) Genomes, chromosomes and genes of perennial Triticeae of the genus Thinopyrum: the value of their transfer into wheat for gains in cytogenomic knowledge and ‘precision’ breeding. In: Tuberosa R, Graner A, Frison E (eds) Advances in genomics of plant genetic resources. Springer Science, Dordrecht, pp 333–358

    Chapter  Google Scholar 

  • Ceoloni C, Kuzmanović L, Forte P, Virili ME, Bitti A (2015) Wheat-perennial Triticeae introgressions: major achievements and prospects. In: Molnár-Láng M, Ceoloni C, Doležel J (eds) Alien introgression in wheat—cytogenetics, molecular biology, and genomics. Springer International Publishing Switzerland, Switzerland, pp 273–313

    Google Scholar 

  • Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathol 60:2–14

    Article  Google Scholar 

  • Chakraborty S, Liu CJ, Mitter V, Scott JB, Akinsanmi OA, Ali S, Dill-Macky R, Nicol J, Backhouse D, Simpfendorfer S (2006) Pathogen population structure and epidemiology are a key to wheat crown rot and Fusarium head blight management. Plant Pathol 35:1–13

    Google Scholar 

  • Chen S, Huang Z, Dai Y, Qin S, Gao Y, Chen J (2013) The development of 7E chromosome-specific molecular markers for Thinopyrum elongatum based on SLAF-seq technology. PLoS One 8(6):e65122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Dilbirligi M, Erayman M, Sandhu D, Sidhu D, Gill KS (2004) Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166:461–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorak J (1975) Meiotic pairing between single chromosomes of diploid Agropyron elongatum and decaploid A. elongatum in Triticum aestivum. Can J Genet Cytol 17:329–336

    Article  Google Scholar 

  • Dvorak J, Knott DR (1977) Homoeologous chromatin exchange in a radiation-induced gene transfer. Can J Genet Cytol 19:125–131

    Article  Google Scholar 

  • Evans A (2009) The feeding of the nine billion. Global food security for the 21 st century—a Chatham House report. Latimer Trend and Co Ltd., London, pp 1–59

  • FAO (2016) Crop prospects and food situation. No. 4, December 2016, pp 1–40. http://www.fao.org/3/a-i6558e.pdf. Accessed 16 Jan 2017

  • FAO (2017) Food and Agriculture Organisation of the United Nations, FAOSTAT, http://www.fao.org/faostat/en/#data. Accessed 16 Jan 2017

  • Fedak G, Han F, Cao W, Burvill M, Kriteno S, Wang L (2003) Identification and characterization of novel sources of resistance to Fusarium head blight. In: Pogna NE et al (eds) Proceedings of the 10th International Wheat Genetic Symposium, Paestum, Italy, 1–6 September 2003. Istituto Sperimentale per la Cerealicoltura, Rome, pp 354–356

    Google Scholar 

  • Fedak G, Wolfe D, Chi D, Cao W, Xue A (2015) Process of transferring FHB resistance from Thinopyrum elongatum to spring wheat. In: Proceedings of the Botany 2015 Conference. Edmonton, Alberta—Canada, Genetics section (abstract 237)

  • Forte P, Virili ME, Kuzmanović L, Moscetti I, Andrea Gennaro A, D’Ovidio R, Ceoloni C (2014) A novel assembly of Thinopyrum ponticum genes into the durum wheat genome: pyramiding Fusarium head blight resistance onto recombinant lines previously engineered for other beneficial traits from the same alien species. Mol Breed 34:1701–1716

    Article  CAS  Google Scholar 

  • Friebe B, Jiang J, Knott DR, Gill BS (1994) Compensation indices of radiation-induced wheat-Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci 34:400–404

    Article  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Fu S, Lv Z, Qi B, Guo X, Li J, Liu B, Han F (2012) Molecular cytogenetic characterization of wheat-Thinopyrum elongatum addition, substitution and translocation lines with a novel source of resistance to wheat Fusarium head blight. J Genet Genom 39:103–110

    Article  CAS  Google Scholar 

  • Gautam HR, Bhardwaj ML, Kumar R (2013) Climate change and its impact on plant diseases. Curr Sci 105:1685–1691

    Google Scholar 

  • Gennaro A, Koebner RMD, Ceoloni C (2009) A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat. Funct Integr Genom 9:325–334

    Article  CAS  Google Scholar 

  • Gilbert J, Haber S (2013) Overview of some recent developments in fusarium head blight of wheat. Can J Plant Pathol 35:149–174

    Article  CAS  Google Scholar 

  • Gou L, Hattori J, Fedak G, Balcerzak M, Sharpe A, Visendi P, Edwards D, Tinker N, Wei Y-M, Chen G-Y, Ouellet T (2016) Development and validation of Thinopyrum elongatum-expressed molecular markers specific for the long arm of chromosome 7E. Crop Sci 56:354–364

  • Guo J, Zhang X, Hou Y, Cai J, Shen X, Zhou T, Xu H, Ohm HW, Wang H, Li A, Han F, Wang H, Kong L (2015) High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theor Appl Genet 128:2301–2316

    Article  CAS  PubMed  Google Scholar 

  • Horevaj P, Milus EA, Bluhm BH (2011) A real-time qPCR assay to quantify Fusarium graminearum biomass in wheat kernels. J Appl Microbiol 111:396–406

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Li G, Zhan H, Liu C, Yang Z (2012a) New St-chromosome-specific molecular markers for identifying wheat–Thinopyrum intermedium derivative lines. J Genet 91:e69–e74

    PubMed  Google Scholar 

  • Hu L-J, Liu C, Zeng Z-X, Li G-R, Song X-J, Yang Z-J (2012b) Genomic rearrangement between wheat and Thinopyrum elongatum revealed by mapped functional molecular markers. Genes Genom 34:67–75

    Article  CAS  Google Scholar 

  • Ishikawa G, Nakamura T, Ashida T, Saito M, Nasuda S, Endo TR, Wu J, Matsumoto T (2009) Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor Appl Genet 118:499–514

    Article  CAS  PubMed  Google Scholar 

  • Juroszek P, von Tiedemann A (2013) Climate change and potential future risks through wheat diseases: a review. Eur J Plant Pathol 136:21–33

    Article  Google Scholar 

  • Kibirige-Sebunya I, Knott DR (1983) Transfer of stem rust resistance to wheat from an Agropyron chromosome having a gametocidal effect. Can J Genet Cytol 25:215–221

    Article  Google Scholar 

  • Kim NS, Armstrong K, Knott DR (1993) Molecular detection of Lophopyrum chromatin in wheat-Lophopyrum recombinants and their use in physical mapping of chromosome 7D. Theor Appl Genet 85:561–567

    Article  CAS  PubMed  Google Scholar 

  • Knight NL, Sutherland MW, Martin A, Herde DJ (2012) Assessment of infection by Fusarium pseudograminearum in wheat seedling tissues using quantitative PCR and a visual discoloration scale. Plant Dis 96:1661–1669

    Article  CAS  Google Scholar 

  • Knott DR (1980) Mutation of a gene for yellow pigment linked to Lr19 in wheat. Can J Genet Cytol 22:651–654

    Article  CAS  Google Scholar 

  • Knott DR (1984) The genetic nature of mutations of a gene for yellow pigment linked to Lr19 in ‘Agatha’ wheat. Can J Genet Cytol 26:392–393

    Article  Google Scholar 

  • Knott DR, Dvorak J, Nanda JS (1977) The transfer to wheat and homoeology of an Agropyron elongatum chromosome carrying resistance to stem rust. Can J Genet Cytol 19:75–79

    Article  Google Scholar 

  • Kuzmanović L, Gennaro A, Benedettelli S, Dodd IC, Quarrie SA, Ceoloni C (2014) Structural-functional dissection and characterization of yield-contributing traits originating from a group 7 chromosome of the wheatgrass species Thinopyrum ponticum after transfer into durum wheat. J Exp Bot 65:509–525

    Article  PubMed  Google Scholar 

  • Kuzmanović L, Ruggeri R, Virili ME, Rossini R, Ceoloni C (2016) Effects of Thinopyrum ponticum chromosome segments transferred into durum wheat on yield components and related morpho-physiological traits in Mediterranean rain-fed conditions. Field Crop Res 186:86–98

    Article  Google Scholar 

  • Lemmens M, Scholz U, Berthiller F, Asta CD, Koutnik A et al (2005) The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol Plant-Microbe Interact 18:1318–1324

    Article  CAS  PubMed  Google Scholar 

  • Li HJ, Wang XM (2009) Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J Genet Genom 36:557–565

    Article  CAS  Google Scholar 

  • Li HB, Xie GQ, Ma J, Liu GR, Wen SM, Ban T, Chakraborty S, Liu CJ (2010) Genetic relationships between resistances to Fusarium head blight and crown rot in bread wheat (Triticum aestivum L.). Theor Appl Genet 121:941–950

    Article  PubMed  Google Scholar 

  • Liu CJ, Ogbonnaya FC (2015) Resistance to Fusarium crown rot in wheat and barley: a review. Plant Breed 134:365–372

    Article  Google Scholar 

  • Liu Z, Li DY, Zhang XY (2007) Genetic relationships among five basic genomes St, E, A, B and D in Triticeae revealed by genomic southern and in situ hybridization. J Integr Plant Biol 49:1080–1086

    Article  CAS  Google Scholar 

  • Liu S, Hall MD, Griffey CA, McKendry AL (2009) Meta-analysis of QTL associated with Fusarium head blight resistance in wheat. Crop Sci 49:1955–1968

    Article  CAS  Google Scholar 

  • Liu S, Yu L-X, Singh RP, Jin Y, Sorrells ME, Anderson JA (2010) Diagnostic and co-dominant PCR markers for wheat stem rust resistance genes Sr25 and Sr26. Theor Appl Genet 120:691–697

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Li HB, Zhang CY, Yang XM, Liu YX, Yan GJ, Liu CJ (2010) Identification and validation of a major QTL conferring crown rot resistance in hexaploid wheat. Theor Appl Genet 120:1119–1128

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Stiller J, Zhao Q, Feng Q, Cavanagh C, Wang P, Gardiner D, Choulet F, Feuillet C, Zheng Y-L, Wei Y, Yan G, Han B, Manners JM, Liu CJ (2014) Transcriptome and allele specificity associated with a 3BL locus for Fusarium crown rot resistance in bread wheat. PLoS One 9(11):e113309

    Article  PubMed  PubMed Central  Google Scholar 

  • Marais GF, Marais AS, Groenewald JZ (2001) Evaluation and reduction of Lr19-149, a recombined form of the Lr19 translocation of wheat. Euphytica 121:289–295

    Article  CAS  Google Scholar 

  • Martin A, Bovill WD, Percy CD, Herde D, Fletcher S, Kelly A, Neate SM, Sutherland MW (2015) Markers for seedling and adult plant crown rot resistance in four partially resistant bread wheat sources. Theor Appl Genet 128:377–385

    Article  CAS  PubMed  Google Scholar 

  • Matny ON (2015) Fusarium head blight and crown rot on wheat & barley: losses and health risks. Adv Plants Agric Res 2(1):00039

    Google Scholar 

  • Mboup M, Bahri B, Leconte M, De Vallavieille-Pope C, Kaltz O, Enjalbert J (2012) Genetic structure and local adaptation of European wheat yellow rust populations: the role of temperature-specific adaptation. Evol Appl 5:341–352

    Article  PubMed  Google Scholar 

  • McCouch S (2004) Diversifying selection in plant breeding. PLoS Biol 2:e347

    Article  PubMed  PubMed Central  Google Scholar 

  • Mesterházy Á (2002) Role of deoxynivalenol in aggressiveness of Fusarium graminearum and F. culmorum and in resistance to Fusarium head blight. Eur J Plant Pathol 108:675–684

    Article  Google Scholar 

  • Mesterházy Á, Bartok T, Mirocha CG, Komoroczy R (1999) Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breed 118:97–110

    Article  Google Scholar 

  • Miller SS, Watson EM, Lazebnik J, Gulden S, Balcerzak M, Fedak G, Ouellet T (2011) Characterization of an alien source of resistance to Fusarium head blight transferred to Chinese Spring wheat. Botany 89:301–311

    Article  Google Scholar 

  • Mitter V, Zhang MC, Liu CJ, Ghosh R, Ghosh M, Chakraborty S (2006) A high-throughput glasshouse bioassay to detect crown rot resistance in wheat germplasm. Plant Pathol 55:433–442

    Article  Google Scholar 

  • Molnár-Láng M, Ceoloni C, Doležel J (eds) (2015) Alien introgression in wheat—cytogenetics, molecular biology, and genomics. Springer International Publishing Switzerland, Switzerland

    Google Scholar 

  • Monneveaux P, Reynolds MP, Gonzalez Aguilar J, Singh RP (2003) Effects of the 7DL.7Ag translocation from Lophopyrum elongatum on wheat yield and related morphophysiological traits under different environments. Plant Breed 122:379–384

    Article  Google Scholar 

  • Moscetti I, Tundo S, Janni M, Sella L, Gazzetti K, Tauzin A, Giardina T, Masci S, Favaron F, D’Ovidio R (2013) Constitutive expression of the xylanase inhibitor TAXI-III delays Fusarium head blight symptoms in durum wheat transgenic plants. Mol Plant-Microbe Interact 26:1464–1472

    Article  CAS  PubMed  Google Scholar 

  • Mujeeb-Kazi A, Kazi AG, Dundas I, Rasheed A, Ogbonnaya F, Kishii M, Bonnett D, Wang RRC, Xu S, Chen P, Mahmood T, Bux H, Farrakh S (2013) Genetic diversity for wheat improvement as a conduit to food security. In: Sparks DL (ed) Adv agron, vol 122. Academic. Burlington, MA, pp 179–257

    Google Scholar 

  • Mullan DJ, Platteter A, Teakle NL, Appels R, Colmer TD, Anderson JM, Francki MG (2005) EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome 48:811–822

    Article  CAS  PubMed  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agr Sci 144:31–43

    Article  Google Scholar 

  • Oliver RE, Cai X, Xu SS, Chen X, Stack RW (2005) Wheat-alien species derivatives: a novel source of resistance to Fusarium head blight in wheat. Crop Sci 45:1353–1360

    Article  Google Scholar 

  • Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust intensity of leaves and stem of cereals. Can J Res Sect C 26:496–500

    Article  Google Scholar 

  • Pozniak C, Knox R, Clarke F, Clarke J (2007) Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor Appl Genet 114:525–537

    Article  CAS  PubMed  Google Scholar 

  • Prat N, Guilbert C, Prah U, Wachter E, Steiner B et al (2017) QTL mapping of Fusarium head blight resistance in three related durum wheat populations. Theor Appl Genet 130:13–27

    Article  PubMed  Google Scholar 

  • Prins R, Groenewald JZ, Marais GF, Snape JW, Koebner RMD (2001) AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theor Appl Genet 103:618–624

    Article  CAS  Google Scholar 

  • Qi L, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromos Res 15:3–19

    Article  CAS  Google Scholar 

  • Ravel C, Dardevet M, Leenhardt F, Bordes J, Joseph JL, Perretant MR, Exbrayat F, Poncet C, Balfourier F, Chanliaud E, Charmet G (2013) Improving the yellow pigment content of bread wheat flour by selecting the three homoeologous copies of Psy1. Mol Breed 31:87–99

    Article  CAS  Google Scholar 

  • Rawat N, Pumphrey MO, Liu S, Zhang X, Tiwari VK, Ando K, Trick HN, Bockus WW, Akhunov E, Anderson JA, Gill BS (2016) Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat Genet 48:1576–1580

    Article  CAS  PubMed  Google Scholar 

  • Reynolds MP, Calderini DF, Condon AG, Rajaram S (2001) Physiological basis of yield gains in wheat associated with the Lr19 translocation from Agropyron elongatum. Euphytica 119:137–141

    Article  CAS  Google Scholar 

  • Rosewarne G, Bonnett D, Rebetzke G, Lonergan P, Larkin PJ (2015) The potential of Lr19 and Bdv2 translocations to improve yield and disease resistance in the high rainfall wheat zones of Australia. Agronomy 5:55–70

    Article  CAS  Google Scholar 

  • Scherm B, Balmas V, Spanu F, Pani G, Delogu G, Pasquali M, Migheli Q (2013) Fusarium culmorum: causal agent of foot and root rot and head blight on wheat. Molec Plant Pathol 14:323–341

    Article  CAS  Google Scholar 

  • Sears ER (1973) Agropyron-wheat transfers induced by homoeologous pairing. In: Sears ER, Sears LMS (eds) Proceeding of the 4th International Wheat Genetics Symposium. University of Missouri, Columbia, pp 191–199

    Google Scholar 

  • Sharma D, Knott DR (1966) The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can J Genet Cytol 8:137–143

    Article  Google Scholar 

  • Shen X, Ohm H (2006) Fusarium head blight resistance derived from Lophopyrum elongatum chromosome 7E and its augmentation with Fhb1 in wheat. Plant Breed 125:424–429

    Article  CAS  Google Scholar 

  • Shen X, Ohm H (2007) Molecular mapping of Thinopyrum-derived Fusarium head blight resistance in common wheat. Mol Breed 20:131–140

    Article  CAS  Google Scholar 

  • Shen X, Kong L, Ohm H (2004) Fusarium head blight resistance in hexaploid wheat (Triticum aestivum)-Lophopyrum genetic lines and tagging of the alien chromatin by PCR markers. Theor Appl Genet 108:808–813

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Rajaran S (1991) Resistance to Puccinia recondita f. sp. tritici in 50 Mexican bread wheat cultivars. Crop Sci 31:1472–1479

    Article  Google Scholar 

  • Singh RP, Huerta-Espino J, Rajaram S, Crossa J (1998) Agronomic effects from chromosome translocations 7DL.7Ag and 1BL.1RS in spring wheat. Crop Sci 38:27–33

    Article  Google Scholar 

  • Singh A, Reimer S, Pozniak CJ, Clarke FR, Clarke JM, Clarke JM, Knox RE, Singh AK (2009) Allelic variation at Psy1-A1 and association with yellow pigment in durum wheat grain. Theor Appl Genet 118:1539–1548

    Article  CAS  PubMed  Google Scholar 

  • Sivasamy M, Kumar J, Menon MK, Tomar SMS (2010) Developing elite, durable disease resistant wheat cultivars combining high grain yield and end-use quality by introgressing effective genes employing conventional and modern breeding approaches. Ann Wheat Newsl 56:87–94

    Google Scholar 

  • Solh M (2010) Ensuring food security in a changing climate: How can science and technology help? In: Solh M, Saxena MC (eds) Proceedings of the international conference ‘food security and climate change in dry areas’, 1–4 February 2010, Amman, Jordan, pp 5–12

  • Somo M, Chao S, Acevedo M, Zurn J, Cai X, Marais F (2014) A genomic comparison of homoeologous recombinants of the Lr19 (T4) translocation in wheat. Crop Sci 54:565–575

    Article  CAS  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  CAS  PubMed  Google Scholar 

  • Stack RW, Frohberg RC, Casper H (1997) Reaction of spring wheats incorporating Sumai-3 derived resistance to inoculation with seven Fusarium species. Cereal Res Commun 25:667–671

    Google Scholar 

  • Steenwerth KL, Hodson AK, Bloom AJ, Carter MR, Cattaneo A et al (2014) Climate-smart agriculture global research agenda: scientific basis for action. Agric Food Secur 3:11

    Article  Google Scholar 

  • Tai TH, Tanksley SD (1990) A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol Biol Rep 8:297–303

    Article  Google Scholar 

  • Wang J-R, Wang L, Gulden S, Rocheleau H, Balcerzak M et al (2010) RNA profiling of fusarium head blight-resistant wheat addition lines containing the Thinopyrum elongatum chromosome 7E. Can J Plant Pathol 32:188–214

    Article  CAS  Google Scholar 

  • Xie GQ, Zhang MC, Magner T, Ban T, Chakraborty S, Liu CJ (2006) Evidence that resistance to Fusarium head blight and crown rot are controlled by different genes in wheat. In: Ban T, Lewis JM, Phipps EE (eds) The global Fusarium initiative for international collaboration: a strategic planning workshop. El Batán, Mexico; March 14–17, 2006. CIMMYT, Mexico

  • Xue S, Zhang Z, Lin F, Kong Z, Cao Y, Li C, Yi H, Mei M, Zhu H, Wu J, Xu H, Zhao D, Tian D, Zhang C, Ma Z (2008) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181–189

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Dubcovsky J (2008) Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theor Appl Genet 116:635–645

    Article  CAS  PubMed  Google Scholar 

  • Zhang XL, Shen XR, Hao YF, Cai JJ, Ohm HW, Kong L (2011) A genetic map of Lophopyrum ponticum chromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust. Theor Appl Genet 122:263–270

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Halder J, White RP, Hughes DJ, Ye Z, Wang C, Xu R, Gan B, Fitt BDL (2014) Climate change increases risk of fusarium ear blight on wheat in central China. Ann Appl Biol 164:384–395

    Article  Google Scholar 

  • Zheng Z, Ma J, Stiller J, Zhao Q, Feng Q, Choulet F, Feuillet C, Zheng Y-L, Wei Y, Han B, Yan G, Manners JM, Liu CJ (2015) Fine mapping of a large-effect QTL conferring Fusarium crown rot resistance on the long arm of chromosome 3B in hexaploid wheat. BMC Genom 16:850

    Article  Google Scholar 

Download references

Acknowledgements

This work and paper is dedicated to our highly esteemed colleague and dear friend Renato D’Ovidio, who prematurely passed away on March 2, 2017. We are all indebted to him for continuous inspiration, support, and enthusiasm, generously offered throughout his life, both at work and outside. Financial support from Lazio region—FILAS project “MIGLIORA” is gratefully acknowledged. This research is supported by the Premier’s Research and Industry Fund grant provided by the South Australian Government Department of State Development. We are thankful to Moshe Feldman for having provided seeds of the CS7E(7D) substitution line, to Douglas Knott and Robert McIntosh for seeds of KS lines and Agatha mutants, and to Penny Tricker for critical reading of the manuscript. Special thanks are due to Alessandra Bitti for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Ceoloni.

Ethics declarations

Conflict of interest

The authors declare that they do not have conflict of interest.

Additional information

Communicated by Steven S. Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 672 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceoloni, C., Forte, P., Kuzmanović, L. et al. Cytogenetic mapping of a major locus for resistance to Fusarium head blight and crown rot of wheat on Thinopyrum elongatum 7EL and its pyramiding with valuable genes from a Th. ponticum homoeologous arm onto bread wheat 7DL. Theor Appl Genet 130, 2005–2024 (2017). https://doi.org/10.1007/s00122-017-2939-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-2939-8

Navigation