Skip to main content
Log in

Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Transferring the knowledge bases between related species may assist in enlarging the yield potential of crop plants. Being cereals, rice and wheat share a high level of gene conservation; however, they differ at metabolic levels as a part of the environmental adaptation resulting in different yield capacities. This review focuses on the current understanding of genetic and molecular regulation of yield-associated traits in both crop species, highlights the similarities and differences and presents the putative knowledge gaps. We focus on the traits associated with phenology, photosynthesis, and assimilate partitioning and lodging resistance; the most important drivers of yield potential. Currently, there are large knowledge gaps in the genetic and molecular control of such major biological processes that can be filled in a translational biology approach in transferring genomics and genetics informations between rice and wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdelkhalik AF, Shishido R, Nomura K, Ikehashi H (2005) QTL-based analysis of leaf senescence in an indica/japonica hybrid in rice (Oryza sativa L.). Theor Appl Genet 110:1226–1235

    CAS  PubMed  Google Scholar 

  • Abebe T, Wise RP, Skadsen RW (2009) Comparative transcriptional profiling established the awn as the major photosynthetic organ of the barley spike while the lemma and the palea primarily protect the seed. Plant J 2(3):247–259

    CAS  Google Scholar 

  • Adachi S, Tsuru Y, Nito N et al (2011) Identification and characterization of genomic regions on chromosomes 4 and 8 that control the rate of photosynthesis in rice leaves. J Exp Bot 62:1927–1938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akhunova A, Matniyazov R, Liang H, Akhunova E (2010) Homoeolog-specific transcriptional bias in allopolyploid wheat. BMC Genomics 11:505

    PubMed Central  PubMed  Google Scholar 

  • Ali ML, Baenziger PS, Ajlouni ZA, Campbell BT, Gill KS, Eskridge KM, Mujeeb-Kazi A, Dweikat I (2011) Mapping QTL for agronomic traits on wheat chromosome 3A and a comparison of recombinant inbred chromosome line populations. Crop Sci 51:553

    Google Scholar 

  • Allen AM, Barker GL, Berry ST et al (2011) Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J. 9(9):1086–1099

    CAS  PubMed  Google Scholar 

  • Allen AM, Barker GL, Wilkinson P et al (2013) Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.). Plant Biotechnol J. 11(3):279–295

    CAS  PubMed  Google Scholar 

  • Alonso AP, Val DL, Shachar-Hill Y (2011) Central metabolic fluxes in the endosperm of developing maize seeds and their implications for metabolic engineering. Metab Eng 13:96–107

    CAS  PubMed  Google Scholar 

  • Aluko G, Martinez C, Tohme J, Castano C, Bergman C, Oard JH (2004) QTL mapping of grain quality traits from the interspecific cross Oryza sativa, O. glaberrima. Theor Appl Genet 109(3):630–639

    CAS  PubMed  Google Scholar 

  • Andrés F, Galbraith DW, Talón M, Domingo C (2009) Analysis of PHOTOPERIOD SENSITIVITY5 sheds light on the role of phytochromes in photoperiodic flowering in Rice. Plant Physiol 151:681–690

    PubMed Central  PubMed  Google Scholar 

  • Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci 96:10284–10289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Sci 309:741–745

    CAS  Google Scholar 

  • Asli DE, Houshmandfar A (2011) Dry matter accumulation and auxin levels within developing grains of different durum wheat genotypes. Adv Environ Biol 5:678–682

    CAS  Google Scholar 

  • Austin RB, Morgan CL, Ford MA, Bhagwat SG (1982) Flag leaf photosynthesis of triticum aestivum and related diploid and tetraploid species. Ann Bot 49:177–189

    Google Scholar 

  • Bai X, Luo L, Kovi M, Zhan W, Xing Y (2010) Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genet 11:16

    PubMed Central  PubMed  Google Scholar 

  • Bartrina I, Otto E, Strnad M, Werner T, Schmülling T (2011) Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in arabidopsis thaliana. Plant Cell 23:69–80

    CAS  PubMed Central  PubMed  Google Scholar 

  • Becker J, Heun M (1995) Barley microsatellites: allele variation and mapping. Plant Mol Biol 27:835–845

    CAS  PubMed  Google Scholar 

  • Bednarek J, Boulaflous A, Girousse C, Ravel C, Tassy C, Barret P, Bouzidi MF, Mouzeyar S (2012) Down-regulation of the TaGW2 gene by RNA interference results in decreased grain size and weight in wheat. J Exp Bot. doi:10.1093/jxb/errs321439

    PubMed  Google Scholar 

  • Beleggia R, Platani C, Nigro F, De Vita P, Cattivelli L, Papa R (2013) Effect of genotype, environment and genotype-by-environment interaction on metabolite profiling in durum wheat grain. J Cereal Sci 57:183–192

    CAS  Google Scholar 

  • Beltrano J, Carbone A, Montaldi ER, Guiamet JJ (1994) Ethylene as promoter of wheat grain maturation and ear senescence. Plant Growth Regul 15:107–112

    CAS  Google Scholar 

  • Bennetzen JL, Ma J (2003) The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Curr Opin Plant Biol 6:128–133

    CAS  PubMed  Google Scholar 

  • Bogard M, Jourdan M, Allard V, Martre P, Perretant MR, Ravel C, Heumez E, Orford S, Snape J, Griffiths S et al (2011) Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs. J Exp Bot 62:3621–3636

    CAS  PubMed  Google Scholar 

  • Bolot S, Abrouk M, Masood-Quraishi U, Stein N, Messing J, Feuillet C, Salse J (2009) The ‘inner circle’ of the cereal genomes. Curr Opin Plant Biol 12(2):119–125

    CAS  PubMed  Google Scholar 

  • Borràs-Gelonch G, Slafer GA, Casas AM, van Eeuwijk F, Romagosa I (2010) Genetic control of pre-heading phases and other traits related to development in a double-haploid barley (Hordeum vulgare L.) population. Field Crops Res 119:36–47

    Google Scholar 

  • Borràs-Gelonch G, Denti M, Thomas WTB, Romagosa I (2011) Genetic control of pre-heading phases in the Steptoe × Morex barley population under different conditions of photoperiod and temperature. Euphy 183:303–321

    Google Scholar 

  • Borràs-Gelonch G, Rebetzke GJ, Richards RA, Romagosa I (2012) Genetic control of duration of pre-anthesis phases in wheat (Triticum aestivum L.) and relationships to leaf appearance, tillering, and dry matter accumulation. J Exp Bot 63:69–89

    PubMed Central  PubMed  Google Scholar 

  • Bowsher CG, Eyres LM, Gummadova JO, Hothi P, McLean KJ, Munro AW, Scrutton NS, Hanke GT, Sakakibara Y, Hase T (2012) Identification of N-terminal regions of wheat leaf ferredoxin NADP + oxidoreductase important for interactions with ferredoxin. Biochem 50:1778–1787

    Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nat 491(7426):705–710

    CAS  Google Scholar 

  • Brenner ML, Cheikh N (1995) The role of hormones in photosynthate partitioning and seed filling. In: Davies PJ (ed) Plant hormones. Kluwer Academic Publishers, Dordrecht, pp 1–11

    Google Scholar 

  • Brocklehurst P (1977) Factors controlling grain weight in wheat. Nature 266:348–349

    Google Scholar 

  • Caemmerer S, Evans J (1991) Determination of the average partial pressure of CO2 in chloroplasts from leaves of several C3 plants. Funct Plant Biol 18:287–305

    Google Scholar 

  • Carreno-Quintero N, Acharjee A, Maliepaard C, Bachem CWB, Mumm R, Bouwmeester H, Visser RGF, Keurentjes JJB (2012) Untargeted metabolic quantitative trait loci analyses reveal a relationship between primary metabolism and potato tuber quality. Plant Physiol 158:1306–1318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carter AH, Santra DK, Kidwell KK (2012) Assessment of the effects of the Gpc-B1 allele on senescence rate, grain protein concentration and mineral content in hard red spring wheat (Triticum aestivum L.) from the Pacific Northwest Region of the USA. Plant Breed 131:62–68

    CAS  Google Scholar 

  • Carver B, Johnson R, Rayburn A (1989) Genetic analysis of photosynthetic variation in hexaploid and tetraploid wheat and their interspecific hybrids. Photosynth Res 20:105–118

    CAS  PubMed  Google Scholar 

  • Castleden CK, Aoki N, Gillespie VJ, MacRae EA, Quick WP, Buchner P, Foyer CH, Furbank RT, Lunn JE (2004) Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses. Plant Physiol 135:1753–1764

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cavanagh CR, Chao S, Wang S et al (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110(20):8057–8062

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cha K-W, Lee Y-J, Koh H-J, Lee B-M, Nam Y-W, Paek N-C (2002) Isolation, characterization, and mapping of the stay green mutant in rice. Theor Appl Genet 104:526–532

    CAS  PubMed  Google Scholar 

  • Chao S, Zhang W, Akhunov E, Sherman J, Ma Y, Luo M, Dubcovsky J (2009) Analysis of gene-derived SNP marker polymorphism in wheat (Triticum aestivum L.). Mol Breed 23:23–33

    CAS  Google Scholar 

  • Chen M, Blankenship RE (2011) Expanding the solar spectrum used by photosynthesis. Trends Plant Sci 16:427–431

    CAS  PubMed  Google Scholar 

  • Chen X, Zhang W, Xie Y, Lu W, Zhang R (2007) Comparative proteomics of thylakoid membrane from a chlorophyll b-less rice mutant and its wild type. Plant Sci 173:397–407

    CAS  Google Scholar 

  • Chen Y, Carver BF, Wang S, Cao S, Yan L (2010) Genetic regulation of developmental phases in winter wheat. Mol Breed 26:573–582

    Google Scholar 

  • Chen M, Luo J, Shao G, Wei X, Tang S, Sheng Z, Song J, Hu P (2011) Fine mapping of a major QTL for flag leaf width in rice, qFLW4, which might be caused by alternative splicing of NAL1. Plant Cell Rep 31:863–872

    PubMed  Google Scholar 

  • Chojecki AJS, Bayliss MW, Gale MD (1986) Cell production and DNA accumulation in the wheat endosperm, and their association with grain weight. Ann Bot 58:809–817

    Google Scholar 

  • Christin P-A, Salamin N, Muasya AM, Roalson EH, Russier F, Besnard G (2008) Evolutionary switch and genetic convergence on rbcL following the evolution of C4 photosynthesis. Mol Biol Evol 25:2361–2368

    CAS  PubMed  Google Scholar 

  • Chu CG, Tan CT, Yu GT, Zhong S, Xu SS, Yan L (2011) A novel retrotransposon inserted in the dominant Vrn-B1 allele confers spring growth habit in tetraploid wheat. G3 Genes Genomes Genet 1:637–645

    CAS  Google Scholar 

  • Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W, Laurie DA, Greenland AJ (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58:1231–1244

    CAS  PubMed  Google Scholar 

  • Colasanti J, Coneva V (2009) Mechanisms of floral induction in grasses: something borrowed, something new. Plant Physiol 149:56–62

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coleman RK, Gill GS, Rebetzke GJ (2001) Identification of quantitative trait loci for traits conferring weed competitiveness in wheat (Triticum aestivum L.). Aust J Agric Res 52:1235–1246

    CAS  Google Scholar 

  • Collins C, Dewitte W, Murray JAH (2012) D-type cyclins control cell division and developmental rate during Arabidopsis seed development. J Exp Bot. doi:10.1093/jxb/ers015

    PubMed Central  PubMed  Google Scholar 

  • Cook FR, Fahy B, Trafford K (2012) A rice mutant lacking a large subunit of ADP-glucose pyrophosphorylase has drastically reduced starch content in the culm but normal plant morphology and yield. Funct Plant Biol 39:1068

    CAS  Google Scholar 

  • Costa LM, Yuan J, Rouster J, Paul W, Dickinson H, Gutierrez-Marcos JF (2012) Maternal control of nutrient allocation in plant seeds by genomic imprinting. Curr Biol 22:160–165

    CAS  PubMed  Google Scholar 

  • Covshoff S, Hibberd JM (2012) Integrating C4 photosynthesis into C3 crops to increase yield potential. Curr Opin Biotechnol 23:209–214

    CAS  PubMed  Google Scholar 

  • Crismani W, Kapoor S, Able JA (2011) Comparative transcriptomics reveals 129 transcripts that are temporally regulated during anther development and meiotic progression in both bread wheat (Triticum aestivum) and rice (Oryza sativa). Int J Plant Genomics 2011:1–9

    Google Scholar 

  • Cui K, Peng S, Xing Y, Yu S, Xu C, Zhang Q (2003) Molecular dissection of the genetic relationships of source, sink and transport tissue with yield traits in rice. Theor Appl Genet 106:649–658

    CAS  PubMed  Google Scholar 

  • Cuthbert JL, Somers DJ, Brûlé-Babel AL, Brown PD, Crow GH (2008) Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet 117:595–608

    CAS  PubMed  Google Scholar 

  • Danyluk J, Kane NA, Breton G, Limin AE, Fowler DB, Sarhan F (2003) TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol 132:1849–1860

    CAS  PubMed Central  PubMed  Google Scholar 

  • Degenkolbe T, Do PT, Kopka J, Zuther E, Hincha DK, Kohl KI (2013) Identification of drought tolerance markers in a diverse population of rice cultivars by expression and metabolite profiling. PLoS One 8(5):e63637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dhillon T, Pearce SP, Stockinger EJ, Distelfeld A, Li C, Knox AK, Vashegyi I, Vágújfalvi A, Galiba G, Dubcovsky J (2010) Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol 153:1846–1858

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dibari B, Murat F, Chosson A, Gautier V, Poncet C, Lecomte P, Mercier I, Bergès H, Pont C, Blanco A, Salse J (2012) Deciphering the genomic structure, function and evolution of carotenogenesis related phytoene synthases in grasses. BMC Genomics 6(13):221

    Google Scholar 

  • Distelfeld A, Uauy C, Fahima T, Dubcovsky J (2006) Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol 169:753–763

    CAS  PubMed  Google Scholar 

  • Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H, Saranga Y, Fahima T (2007) Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Planta 129:635–643

    CAS  Google Scholar 

  • Distelfeld A, Li C, Dubcovsky J (2009) Regulation of flowering in temperate cereals. Curr Opin Plant Biol 12:178–184

    CAS  PubMed  Google Scholar 

  • Dobrovolskaya O, Pshenichnikova T, Arbuzova V, Lohwasser U, Röder M, Börner A (2007) Molecular mapping of genes determining hairy leaf character in common wheat with respect to other species of the Triticeae. Euphytica 155:285–293

    CAS  Google Scholar 

  • Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18:926–936

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dong Y, Kamiunten H, Ogawa T, Tsuzuki E, Terao H, Lin D, Matsuo M (2004) Mapping of QTLs for leaf developmental behavior in rice (Oryza sativa L.). Euphytica 138:169–175

    CAS  Google Scholar 

  • Dong Y, Yang Z, Xu J et al (2007) Quantitative trait loci for leaf chlorophyll content at two developmental stages of rice. Commun Biometry Crop Sci 2:1–7

  • Dupont F (2008) Metabolic pathways of the wheat (Triticum aestivum) endosperm amyloplast revealed by proteomics. BMC Plant Biol 8:39

    PubMed Central  PubMed  Google Scholar 

  • Eastmond PJ, Jones RL (2005) Hormonal regulation of gluconeogenesis in cereal aleurone is strongly cultivar-dependent and gibberellin action involves SLENDER1 but not GAMYB. Plant J 44:483–493

    CAS  PubMed  Google Scholar 

  • Ebitani T, Takeuchi Y, Nonoue Y, Yamamoto T, Takeuchi K, Yano M (2005) Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar “Kasalath” in a genetic background of japonica elite cultivar “Koshihikari”. Breed Sci 55:65–73

    CAS  Google Scholar 

  • El-Lithy ME, Rodrigues GC, van Rensen JJS, Snel JFH, Dassen HJHA, Koornneef M, Jansen MAK, Aarts MGM, Vreugdenhil D (2005) Altered photosynthetic performance of a natural Arabidopsis accession is associated with atrazine resistance. J Exp Bot 56(416):1625–1634

    CAS  PubMed  Google Scholar 

  • Evans JR (2013) Improving photosynthesis. Plant Physiol. doi:10.1104/pp.113.219006

    PubMed Central  Google Scholar 

  • Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistances along the CO2 pathway inside leaves. J Exp Bot 60:2235–2248

    CAS  PubMed  Google Scholar 

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    CAS  PubMed  Google Scholar 

  • Fan G, Dong Y, Wang C, Wan J, Xie H, Xu C, Zhu J, Cai Q (2007) Analysis of QTLs for flag-leaf shape and its response to elevated CO2 in rice. Rice Sci 14:7–12

    Google Scholar 

  • Fan C, Yu S, Wang C, Xing Y (2008) A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet 118:465–472

    PubMed  Google Scholar 

  • Faricelli ME, Valárik M, Dubcovsky J (2009) Control of flowering time and spike development in cereals: the earliness per se Eps-1 region in wheat, rice, and Brachypodium. Funct Integr Genomics 10:293–306

    PubMed Central  PubMed  Google Scholar 

  • Farooq M, Tagle A, Santos R, Ebron L, Fujita D, Kobayashi N (2010) Quantitative trait loci mapping for leaf length and leaf width in rice cv. ir64 derived lines. J Integr Plant Biol 52:578–584

    CAS  PubMed  Google Scholar 

  • Farooq M, Bramley H, Palta JA, Siddique KHM (2011) Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci 30:491–507

    Google Scholar 

  • Faure S, Turner AS, Gruszka D, Christodoulou V, Davis SJ, von Korff M, Laurie DA (2012) Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. Proc Natl Acad Sci. doi:10.1073/pnas.1120496109

    Google Scholar 

  • Feng L, Wang K, Li Y, Tan Y, Kong J, Li H, Li Y, Zhu Y (2007) Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant Cell Rep 26:1635–1646

    CAS  PubMed  Google Scholar 

  • Feng L, Li H, Jiao J, Li D, Zhou L, Wan J, Li Y (2009) Reduction in SBPase activity by antisense RNA in transgenic rice plants: effect on photosynthesis, growth, and biomass allocation at different nitrogen levels. J Plant Biol 52:382–394

    Google Scholar 

  • Fernie AR, Schauer N (2008) Metabolomics-assisted breeding: a viable option for crop improvement. Trends Genet 25:39–48

    PubMed  Google Scholar 

  • Fiehn O (2002) Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    CAS  PubMed  Google Scholar 

  • Flood PJ, Harbinson J, Aarts MGM (2011) Natural genetic variation in plant photosynthesis. Trends in Plant Sci 16:327–335

    CAS  Google Scholar 

  • Fontaine JX, Ravel C, Pageau K et al (2009) A quantitative genetic study for elucidating the contribution of glutamine synthetase, glutamate dehydrogenase and other nitrogen-related physiological traits to the agronomic performance of common wheat. Theor Appl Genet 119:645–662

  • Forster BP, Ellis RP, Thomas WTB, Newton AC, Tuberosa R, This D, El-Enein RA, Bahri MH, Ben Salem M (2000) The development and application of molecular markers for abiotic stress tolerance in barley. J Exp Bot 51:19–27

    CAS  PubMed  Google Scholar 

  • Foulkes MJ, Slafer GA, Davies WJ, Berry PM, Sylvester-Bradley R, Martre P, Calderini DF, Griffiths S, Reynolds MP (2011) Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J Exp Bot 62:469–486

    CAS  PubMed  Google Scholar 

  • Frank T, Rohlig RM, Davies HV, Barros E, Engel KH (2012) Metabolite profiling of maize kernels-gene modification versus environmental influence. J Agric Food Chem 60:3005–3012

    CAS  PubMed  Google Scholar 

  • Fu FF, Xue HW (2010) Coexpression analysis identifies rice starch regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiol 154:927–938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu J-D, Yan Y-F, Kim MY, Lee S-H, Lee B-W (2011) Population-specific quantitative trait loci mapping for functional stay-green trait in rice (Oryza sativa L.). Genome 54:235–243

    CAS  PubMed  Google Scholar 

  • Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, Sasaki T, Asahi T, Iwasaki Y (1999) Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. Proc Natl Acad Sci 96:7575–7580

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fukao T, Yeung E, Bailey-Serres J (2012) The submergence tolerance gene SUB1A delays leaf senescence under prolonged darkness through hormonal regulation in rice. Plant Physiol 160:1795–1807

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci 95:1971–1974

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gartner T, Steinfath M, Andorf S, Lisec J, Meyer RC, Altmann T, Willmitzer L, Selbig J (2009) Improved heterosis prediction by combining information on DNA- and metabolic markers. PLoS One 4:e5220

    PubMed Central  PubMed  Google Scholar 

  • Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW (2010) A Genetic framework for grain size and shape variation in wheat. Plant Cell 22:1046–1056

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gil-Humanes J, Piston F, Martin A, Barro F (2009) Comparative genomic analysis and expression of the APETALA2-like genes from barley, wheat, and barley–wheat amphiploids. BMC Plant Biol 9:66

    PubMed Central  PubMed  Google Scholar 

  • Giuliani R, Koteyeva N, Voznesenskaya E, Evans MA, Cousins AB, Edwards GE (2013) Coordination of leaf photosynthesis, transpiration, and structural traits in rice and wild relatives. Plant Physiol 162:1632–1651

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gómez E, Royo J, Muñiz LM, Sellam O, Paul W, Gerentes D, Barrero C, López M, Perez P, Hueros G (2009) The Maize transcription factor Myb-related protein-1 is a key regulator of the differentiation of transfer cells. Plant Cell 21:2022–2035

    PubMed Central  PubMed  Google Scholar 

  • Gouis J, Bordes J, Ravel C, Heumez E, Faure S, Praud S, Galic N, Remoué C, Balfourier F, Allard V et al (2011) Genome-wide association analysis to identify chromosomal regions determining components of earliness in wheat. Theor Appl Genet 124:597–611

    PubMed  Google Scholar 

  • Gregersen PL, Holm PB, Krupinska K (2008) Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biol 10:37–49

    CAS  PubMed  Google Scholar 

  • Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752

    CAS  PubMed  Google Scholar 

  • Gu J, Yin X, Struik PC, Stomph TJ, Wang H (2012) Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (Oryza sativa L.) leaves under drought and well-watered field conditions. J Exp Bot. doi:10.1093/jxb/err292

    Google Scholar 

  • Gubler F, Chandler PM, White RG, Llewellyn DJ, Jacobsen JV (2002) Gibberellin signaling in barley aleurone cells. control of SLN1 and GAMYB expression. Plant Physiol 129:191–200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Habash DZ, Bernard S, Schondelmaier J et al (2006) The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield. Theor Appl Genet 114:403–419

  • Hädrich N, Hendriks JHM, Kötting O, Arrivault S, Feil R, Zeeman SC, Gibon Y, Schulze WX, Stitt M, Lunn JE (2012) Mutagenesis of cysteine 81 prevents dimerization of the APS1 subunit of ADP-glucose pyrophosphorylase and alters diurnal starch turnover in Arabidopsis thaliana leaves. Plant J 70:231–242

    PubMed  Google Scholar 

  • Hai L, Guo H, Xiao S, Jiang G, Zhang X, Yan C, Xin Z, Jia J (2005) Quantitative trait loci (QTL) of stem strength and related traits in a doubled-haploid population of wheat (Triticum aestivum L.). Euphytica 141:1–9

    CAS  Google Scholar 

  • Hawkesford MJ, Araus JL, Park R, Calderini D, Miralles D, Shen T, Zhang J, Parry MAJ (2013) Prospects of doubling global wheat yields. Food Energy Secur. doi:10.1002/fes3.15

    Google Scholar 

  • Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722

    CAS  PubMed  Google Scholar 

  • Hays DB, Do JH, Mason RE, Morgan G, Finlayson SA (2007) Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Sci 172:1113–1123

    CAS  Google Scholar 

  • Herrmann A, Schauer N (2013) Metabolomics-assisted plant breeding. In: Weckwerth W, Kahl G (eds) The handbook of plant metabolomics. doi 10.1002/9783527669882.ch13

  • Hill CB, Taylor JD, Edwards J, Mather D, Bacic A, Langridge P, Roessner U (2013) Whole-genome mapping of agronomic and metabolic traits to identify novel quantitative trait loci in bread wheat grown in a water-limited environment. Plant Physiol 162:1266–1281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirasawa T, Ozawa S, Taylaran RD, Ookawa T (2010) Varietal differences in photosynthetic rates in rice plants, with special reference to the nitrogen content of leaves. Plant Prod Sci 13:53–57

    CAS  Google Scholar 

  • Hu W, Zhang H, Jiang J, Wang Y, Sun D, Wang X, Hong D (2012) Discovery of a germplasm with large flag leaf angle and its genetic analysis as well as QTL mapping in japonica rice. Chin J Rice Sci 26:34–42

    Google Scholar 

  • Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS, Somers DJ, Brown PD (2006) Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113:753–766

    CAS  PubMed  Google Scholar 

  • Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497

    CAS  PubMed  Google Scholar 

  • Hubbart S, Ajigboye OO, Horton P, Murchie EH (2012) The photoprotective protein PsbS exerts control over CO2 assimilation rate in fluctuating light in rice. Plant J 71:402–412

    CAS  PubMed  Google Scholar 

  • Ishikawa R, Tamaki S, Yokoi S, Inagaki N, Shinomura T, Takano M, Shimamoto K (2005) Suppression of the floral activator Hd3a is the principal cause of the night break effect in rice. Plant Cell 17:3326–3336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishikawa C, Hatanaka T, Misoo S, Miyake C, Fukayama H (2011) Functional incorporation of sorghum small subunit increases the catalytic turnover rate of rubisco in transgenic rice. Plant Physiol 156:1603–1611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishimaru K, Kobayashi N, Ono K, Yano M, Ohsugi R (2001a) Are contents of Rubisco, soluble protein and nitrogen in flag leaves of rice controlled by the same genetics? J Exp Bot 52:1827–1833

    CAS  PubMed  Google Scholar 

  • Ishimaru K, Yano M, Aoki N, Ono K, Hirose T, Lin SY, Monna L, Sasaki T, Ohsugi R (2001b) Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags. Theor Appl Gen 102:793–800

    CAS  Google Scholar 

  • Ishimaru K, Kashiwagi T, Hirotsu N, Madoka Y (2005a) Identification and physiological analyses of a locus for rice yield potential across the genetic background. J Exp Bot 56:2745–2753

    CAS  PubMed  Google Scholar 

  • Ishimaru T, Hirose T, Matsuda T et al (2005b) Expression patterns of genes encoding carbohydrate-metabolizing enzymes and their relationship to grain filling in rice (Oryza sativa L.): comparison of caryopses located at different positions in a panicle. Plant Cell Physiol 46:620–628

    CAS  PubMed  Google Scholar 

  • Ishiwata A, Ozawa M, Nagasaki H, Kato M, Noda Y, Yamaguchi T, Nosaka M, Shimizu-Sato S, Nagasaki A, Maekawa M, Hirano H, Sato Y (2013) Two WUSCHEL-related homeobox genes, narrow leaf 2 and narrow leaf 3 control leaf width in rice. Plant Cell Physiol 54(5):779–792

    CAS  PubMed  Google Scholar 

  • Islam N, Tsujimoto H, Hirano H (2003) Proteome analysis of diploid, tetraploid and hexaploid wheat: towards understanding genome interaction in protein expression. Proteomics 3:549–557

    CAS  PubMed  Google Scholar 

  • Izawa T (2007) Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J Exp Bot 58:3091–3097

    CAS  PubMed  Google Scholar 

  • James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215–222

    CAS  PubMed  Google Scholar 

  • Ji X, Van den Ende W, Schroeven L, Clerens S, Geuten K, Cheng S, Bennett J (2007) The rice genome encodes two vacuolar invertases with fructan exohydrolase activity but lacks the related fructan biosynthesis genes of the Pooideae. New Phytol 173:50–62

    CAS  PubMed  Google Scholar 

  • Jia J, Zhao S, Kong X et al (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496(7443):91–95

    CAS  PubMed  Google Scholar 

  • Jiang Y, Cai Z, Xie W et al (2012) Rice functional genomics research: progress and implications for crop genetic improvement. Biotechnol Adv 30:1059–1070

  • Jiang X, Deng Z, Ru Z, Wu P, Tian J (2013) Quantitative trait loci controlling amino acid contents in wheat. Aust J Crop Sci 7:820–829

    Google Scholar 

  • Joppa L, Du C, Hart G, Hareland G (1997) Mapping gene(s) for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci 37:1586–1589

    CAS  Google Scholar 

  • Kajimura T, Murai K, Takumi S (2011) Distinct genetic regulation of flowering time and grain-filling period based on empirical study of D-genome diversity in synthetic hexaploid wheat lines. Breed Sci 61:130–141

    Google Scholar 

  • Kanbe T, Sasaki H, Aoki N, Yamagishi T, Ohsugi R (2009) The QTL analysis of RuBisCO in flag leaves and non-structural carbohydrates in leaf sheaths of rice [Oryza sativa] using chromosome segment substitution lines and backcross progeny F2 populations. Plant Prod Sci 12:224–232

    CAS  Google Scholar 

  • Kang G, Liu G, Xu W et al (2013) Identification of the isoamylase 3 gene in common wheat and its expression profile during the grain filling period. Genet Mol Res 12:4264–4275

  • Kapralov MV, Smith JAC, Filatov DA (2012) Rubisco evolution in C4 eudicots: an analysis of amaranthaceae sensu lato. PLoS One 7(12):e52974

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kashiwagi T, Ishimaru K (2004) Identification and functional analysis of a locus for improvement of lodging resistance in rice. Plant Physiol 134:676–683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kashiwagi T, Togawa E, Hirotsu N, Ishimaru K (2008) Improvement of lodging resistance with QTLs for stem diameter in rice (Oryza sativa L.). Theor Appl Genet 117:749–757

    PubMed  Google Scholar 

  • Kashiwagi T, Hirotsu N, Ujiie K, Ishimaru K (2010) Lodging resistance locus prl5 improves physical strength of the lower plant part under different conditions of fertilization in rice (Oryza sativa L.). Field Crops Res 115:107–115

    Google Scholar 

  • Kato K, Miura H, Sawada S (1999) Comparative mapping of the wheat Vrn-AI region with the rice Hd-6 region. Genomics 42:204–209

    CAS  Google Scholar 

  • Kato K, Miura H, Sawada S, McIntosh RA (2002) Characterization of QEet.ocs-5A.1, a quantitative trait locus for ear emergence time on wheat chromosome 5AL. Plant Breed 121:389–393

    CAS  Google Scholar 

  • Kebrom T, Chandler P, Swain S et al (2012) Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiol 160:308–318

  • Keller M, Karutz C, Schmid JE, Stamp P, Winzeler M, Keller B, Messmer MM (1999) Quantitative trait loci for lodging resistance in a segregating wheat-spelt population. TAG Theor Appl Genet 98:1171–1182

    CAS  Google Scholar 

  • Kesari R, Lasky JR, Villamor JG, Marais DLD, Chen YC, Liu T, Lin W, Juenger TE, Verslues PE (2012) Intron-mediated alternative splicing of Arabidopsis P5CS1 and its association with natural variation in proline and climate adaptation. Proc Natl Acad Sci. doi:10.1073/pnas.1203433109

    PubMed Central  PubMed  Google Scholar 

  • Kim K-H, Kamal AHM, Shin K-H, Choi J-S, Heo H-Y, Woo S-H (2010a) Large-scale proteome investigation in wild relatives (A, B, and D genomes) of wheat. Acta Biochim Biophys Sin 42:709–716

    CAS  PubMed  Google Scholar 

  • Kim K-H, Kamal AHM, Shin K-H, Choi J-S, Park C-S, Heo H-Y, Woo S-H (2010b) Wild relatives of the wheat grain proteome. J Plant Biol 53:344–357

    CAS  Google Scholar 

  • Komiya R, Yokoi S, Shimamoto K (2009) A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136:3443–3450

    CAS  PubMed  Google Scholar 

  • Koo B-H, Yoo S-C, Park J-W, Kwon C-T, Lee B-D, An G, Zhang Z, Li J, Li Z, Paek N-C (2013) Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol Plant. doi:10.1093/mp/sst088

    PubMed  Google Scholar 

  • Kruse J (2010) Estimating demand for agricultural commodities to 2050. Global Harvest Initiative, Washington, DC, pp 1–26

    Google Scholar 

  • Kuchel H, Williams KJ, Langridge P, Eagles HA, Jefferies SP (2007) Genetic dissection of grain yield in bread wheat I. QTL analysis. Theor Appl Genet 115:1029–1041

    CAS  PubMed  Google Scholar 

  • Kulwal P, Roy J, Balyan H, Gupta P (2003) QTL mapping for growth and leaf characters in bread wheat. Plant Sci 164:267–277

  • Kumar N, Kulwal PL, Balyan HS, Gupta PK (2006) QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed 19:163–177

    Google Scholar 

  • Kyozuka J, Kobayashi T, Morita M, Shimamoto K (2000) Spatially and temporally regulated expression of rice MADS box genes with similarity to arabidopsis class A, B and C genes. Plant Cell Physiol 41:710–718

    CAS  PubMed  Google Scholar 

  • Ladizinsky G (1998) How many tough-rachis mutants gave rise to domesticated barley? Genet Resour Crop Evol 45:411–414

    Google Scholar 

  • Lai K, Duran C, Berkman PJ et al (2012) Single nucleotide polymorphism discovery from wheat next-generation sequence data. Plant Biotechnol J. 10(6):743–749

    CAS  PubMed  Google Scholar 

  • Lanning SP, Fox P, Elser J, Martin JM, Blake NK, Talbert LE (2006) Microsatellite markers associated with a secondary stem solidness locus in wheat. Crop Sci 46:1701

    CAS  Google Scholar 

  • Larkin PD, Park WD (1999) Transcript accumulation and utilization of alternate and non-consensus splice sites in rice granule-bound starch synthase are temperature-sensitive and controlled by a single-nucleotide polymorphism. Plant Mol Biol 40:719–727

    CAS  PubMed  Google Scholar 

  • Larkum AWD, Kühl M (2005) Chlorophyll d: the puzzle resolved. Trend Plant Sci 10:355–357

    CAS  Google Scholar 

  • Laudencia-Chingcuanco DL, Stamova BS, You FM, Lazo GR, Beckles DM, Anderson OD (2007) Transcriptional profiling of wheat caryopsis development using cDNA microarrays. Plant Mol Biol 63:651–668

    CAS  PubMed  Google Scholar 

  • Lawson T, Kramer DM, Raines CA (2012) Improving yield by exploiting mechanisms underlying natural variation of photosynthesis. Curr Opin Biotechnol 23:215–220

    CAS  PubMed  Google Scholar 

  • Lee RH, Wang CH, Huang LT, Chen SC (2001) Leaf senescence in rice plants: cloning and characterization of senescence up-regulated genes. J Exp Bot 52:1117–1121

  • Lesage VS, Merlino M, Chambon C, Bouchet B, Marion D, Branlard G (2012) Proteomes of hard and soft near-isogenic wheat lines reveal that kernel hardness is related to the amplification of a stress response during endosperm development. J Exp Bot 63:1001–1011

    CAS  PubMed  Google Scholar 

  • Leterrier M, Holappa L, Broglie K, Beckles D (2008) Cloning, characterisation and comparative analysis of a starch synthase IV gene in wheat: functional and evolutionary implications. BMC Plant Biol 8:98

  • Lewis S, Faricelli ME, Appendino ML, Valárik M, Dubcovsky J (2008) The chromosome region including the earliness per se locus Eps-Am 1 affects the duration of early developmental phases and spikelet number in diploid wheat. J Exp Bot 59:3595–3607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li W, Nelson J, Chu C, Shi L, Huang S, Liu D (2002) Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica 125:357–366

    CAS  Google Scholar 

  • Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F et al (2003) Control of tillering in rice. Nature 422:618–621

    CAS  PubMed  Google Scholar 

  • Li J, Thomson M, McCouch SR (2004) Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics 168:2187–2195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li D, Wang L, Wang M, Xu Y, Luo W, Liu Y, Xu Z, Li J, Chong K (2009) Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnol J 7:791–806

    CAS  PubMed  Google Scholar 

  • Li P, Chen J, Wu P et al (2011) Quantitative trait loci analysis for the effect of dwarfing gene on coleoptile length and seedling root length and number of bread wheat. Crop Sci 51:2561

  • Li H, Lin F, Wang G, Jing R, Zheng Q, Li B, Li Z (2012a) Quantitative trait loci mapping of dark-induced senescence in winter wheat (Triticum aestivum). J Integr Plant Biol 54:33–44

    PubMed  Google Scholar 

  • Li X, Yan W, Agrama H, Jia L, Jackson A, Moldenhauer K, Yeater K, McClung A, Wu D (2012b) Unraveling the complex trait of harvest index with association mapping in rice (Oryza sativa L.). PLoS One 7:e29350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin W, Ziska L, Namuco O, Bai K (2006) The interaction of high temperature and elevated CO2 on photosynthetic acclimation of single leaves of rice in situ. Physiol Planta 99:178–184

    Google Scholar 

  • Lin D, Zhang J, Zuo H, Xu J, Luo L, Dong Y (2010) Mapping quantitative trait loci associated with leaf senescence during maturation of rice (Oryza sativa L.). Asian J Plant Sci 9:51–57

    Google Scholar 

  • Ling HQ, Zhao S, Liu D et al (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nat 496(7443):87–90

    CAS  Google Scholar 

  • Liu L, Zhou Y, Zhou G, Ye R, Zhao L, Li X, Lin Y (2008) Identification of early-senescence-associated genes in rice flag-leaves. Plant Mol Biol 67:37–55

    CAS  PubMed  Google Scholar 

  • Liu L, Zhou Y, Szczerba MW, Li X, Lin Y (2010) Identification and application of a rice senescence-associated promoter. Plant Physiol 153:1239–1249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu J, Zhang C, Baulcombe DC, Chen ZJ (2012) Maternal siRNAs as regulators of parental genome imbalance and gene expression in endosperm of Arabidopsis seeds. Proc Natl Acad Sci. doi:10.1073/pnas.1203094109

    Google Scholar 

  • Luo MC, Gu YQ, You FM et al (2013) A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci 110(19):7940–7945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma Q-H (2009) The expression of caffeic acid 3-O-methyltransferase in two wheat genotypes differing in lodging resistance. J Exp Bot 60:2763–2771

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, Corneti S, Ortega JLA, Salem MB, Bort J, DeAmbrogio E, del Moral LFG, Demontis A, El-Ahmed A et al (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511

    PubMed Central  PubMed  Google Scholar 

  • Mackill D, Rutger J (1979) The inheritance of induced-mutant semidwarfing genes in rice. J Hered 70:335–341

    Google Scholar 

  • Makino A (2011) Photosynthesis, grain yield and nitrogen utilization in rice and wheat. Plant Physiol 155:125–129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Makino A, Shakashita H, Hidema J, Mae T, Ojima K, Osmond B (1992) Distinctive responses of ribulose-1,5-bisphosphate carboxylase and carbonic anhydrase in wheat leaves to nitrogen nutrition and their possible relationships to CO2-transfer resistance. Plant Physiol 100:1737–1743

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mameaux S, Cockram J, Thiel T, Steuernagel B, Stein N, Taudien S, Jack P, Werner P, Gray JC, Greenland AJ et al (2012) Molecular, phylogenetic and comparative genomic analysis of the cytokinin oxidase/dehydrogenase gene family in the Poaceae. Plant Biotechnol J 10:67–82

    CAS  PubMed  Google Scholar 

  • Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q (2010) Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci 107:19579–19584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martínez E, Delatte T, Schluepmann H, de Jong G, Somsen G, Nunes C, Primavesi L, Coello P, Mitchell R, Paul M (2011) Wheat grain development is characterised by remarkable trehalose 6-phosphate accumulation pre-grain filling: tissue distribution and relationship to SNF1-related protein kinase1 activity. Plant Physiol. doi:10.1104/pp.111.174524

    Google Scholar 

  • Marza F, Bai G-H, Carver BF, Zhou W-C (2005) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112:688–698

    PubMed  Google Scholar 

  • Matsuda F, Okazaki Y, Oikawa A, Kusano M, Nakabayashi R, Kikuchi J, Yonemaru J, Ebana K, Yano M, Saito K (2012) Dissection of genotype–phenotype associations in rice grains using metabolome quantitative trait loci analysis. Plant J 70:624–636

    CAS  PubMed  Google Scholar 

  • Matsumoto T, Wu JZ, Kanamori H et al (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Google Scholar 

  • Matsuoka Y, Yamazaki Y, Ogihara Y, Tsunewaki K (2002) Whole chloroplast geneome comparison of rice, maize, and wheat: implications for chloroplast gene diversification and phylogeny of cereals. Mol Biol Evol 19(12):2084–2091

    CAS  PubMed  Google Scholar 

  • Mayfield D, Chen ZJ, Pires JC (2011) Epigenetic regulation of flowering time in polyploids. Curr Opin Plant Biol 14:174–178

    CAS  PubMed  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × “AC domain”. Genomics 48:870–883

    CAS  Google Scholar 

  • McIntyre CL, Mathews KL, Rattey A, Chapman SC, Drenth J, Ghaderi M, Reynolds M, Shorter R (2010) Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor Appl Genet 120:527–541

    CAS  PubMed  Google Scholar 

  • Meyer FD, Talbert LE, Martin JM, Lanning SP, Greene TW, Giroux MJ (2007) Field evaluation of transgenic wheat expressing a modified ADP-glucose pyrophosphorylase large subunit. Crop Sci 47:336

    CAS  Google Scholar 

  • Meziani S, Nadaud I, Gaillard-Martinie B, Chambon C, Benali M, Branlard G (2012) Proteomic analysis of the mature kernel aleurone layer in common and durum wheat. J Cereal Sci. doi:10.1016/j.jcs.2012.01.010

    Google Scholar 

  • Mir RR, Kumar N, Jaiswal V et al (2012) Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping. Mol Breed 29:963–972

  • Mohapatra P, Panigrahi R, Turner N (2011) Physiology of spikelet development on the rice panicle: is manipulation of apical dominance crucial for grain yield improvement? Adv Agron 110:333–359

    CAS  Google Scholar 

  • Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17

    CAS  PubMed  Google Scholar 

  • Morinaka Y, Sakamoto T, Inukai Y, Agetsuma M, Kitano H, Ashikari M, Matsuoka M (2006) Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol 141:924–931

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morris R, Blevins D, Dietrich J, Durley R, Gelvin S, Gray J, Hommes N, Kaminek M, Mathews L, Meilan R et al (1993) Cytokinins in plant pathogenic bacteria and developing cereal grains. Funct Plant Biol 20:621–637

    CAS  Google Scholar 

  • Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature. doi:10.1038/nature11420

    Google Scholar 

  • Murai K, Takumi S, Koga H, Ogihara Y (2002) Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear–cytoplasm interaction in wheat. Plant J 29:169–181

    PubMed  Google Scholar 

  • Murai K, Miyamae M, Kato H, Takumi S, Ogihara Y (2003) WAP1, a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth. Plant Cell Physiol 44:1255–1265

    CAS  PubMed  Google Scholar 

  • Murat F, Xu JH, Tannier E, Abrouk M, Guilhot N, Pont C, Messing J, Salse J (2010) Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res 20(11):1545–1557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murat F, Zhang R, Guizard S, Flores R, Armero A, Pont C, Steinbach D, Quesneville H, Cooke R, Salse J (2014) Shared subgenome dominance following polyploidization explains grass genome evolutionary plasticity from a seven protochromosome ancestor with 16K protogenes. Genome Biol Evol. 6(1):12–33

    PubMed Central  PubMed  Google Scholar 

  • Murchie E, Pinto M, Horton P (2009) Agriculture and the new challenges for photosynthesis research. New Phytol 181:532–552

    CAS  PubMed  Google Scholar 

  • Mutasa-Gottgens E, Joshi A, Holmes H, Hedden P, Gottgens B (2012) A new RNASeq-based reference transcriptome for sugar beet and its application in transcriptome-scale analysis of vernalization and gibberellin responses. BMC Genomics 13:99

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nadaud I, Girousse C, Debiton C, Chambon C, Bouzidi MF, Martre P, Branlard G (2010) Proteomic and morphological analysis of early stages of wheat grain development. Proteomics 10:2901–2910

    CAS  PubMed  Google Scholar 

  • Nagai T, Makino A (2009) Differences between rice and wheat in temperature responses of photosynthesis and plant growth. Plant Cell Physiol 50:744–755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naik PK, Mohapatra PK (2000) Ethylene inhibitors enhanced sucrose synthase activity and promoted grain filling of basal rice kernels. Funct Plant Biol 27:997–1008

    CAS  Google Scholar 

  • Nair SK, Wang N, Turuspekov Y, Pourkheirandish M, Sinsuwongwat S, Chen G, Sameri M, Tagiri A, Honda I, Watanabe Y et al (2010) Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci 107:490–495

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagawa H, Yamagishi J, Miyamoto N, Motoyama M, Yano M, Nemoto K (2005) Flowering response of rice to photoperiod and temperature: a QTL analysis using a phenological model. Theor Appl Genet 110:778–786

    CAS  PubMed  Google Scholar 

  • Narasimhamoorthy B, Gill BS, Fritz AK et al (2006) Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet 112:787–796

  • Ning S, Chen Q, Yuan Z, Zhang L, Yan Z, Zheng Y, Liu D (2009) Characterization of WAP2 gene in Aegilops tauschii and comparison with homoeologous loci in wheat. J Syst Evol 47:543–551

    Google Scholar 

  • Nishimura A, Ito M, Kamiya N, Sato Y, Matsuoka M (2002) OsNPH1 regulates leaf development and maintenance of the shoot apical meristem in rice. Plant J 30(2):189–201

    CAS  PubMed  Google Scholar 

  • Obara M, Sato T, Sasaki S et al (2004) Identification and characterization of a QTL on chromosome 2 for cytosolic glutamine synthetase content and panicle number in rice. Theor Appl Genet 110:1–11

  • Obata T, Fernie AR (2012) The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci 69:3225–3243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ogihara Y, Mochida K, Nemoto Y, Murai K, Yamazaki Y, Shin-I T, Kohara Y (2003) Correlated clustering and virtual display of gene expression patterns in the wheat life cycle by large-scale statistical analyses of expressed sequence tags. Plant J 33:1001–1011

    PubMed  Google Scholar 

  • Ohto M, Fischer RL, Goldberg RB, Nakamura K, Harada JJ (2005) Control of seed mass by APETALA2. Proc Natl Acad Sci 102:3123–3128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohto M-aki, Floyd SK, Fischer RL, Goldberg RB, Harada JJ (2009) Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. Sex Plant Reprod 22:277–289

    PubMed Central  PubMed  Google Scholar 

  • Olmos S, Distelfeld A, Chicaiza O, Schlatter AR, Fahima T, Echenique V, Dubcovsky J (2003) Precise mapping of a locus affecting grain protein content in durum wheat. Theor Appl Genet 107:1243–1251

    CAS  PubMed  Google Scholar 

  • Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Asano K, Ochiai Y, Ikeda M, Nishitani R et al (2010) New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Commun 1:132

    PubMed Central  PubMed  Google Scholar 

  • Ort DR, Zhu X, Melis A (2011) Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiol 155:79–85

    CAS  PubMed Central  PubMed  Google Scholar 

  • Panda BB, Kariali E, Panigrahi R, Mohapatra PK (2009) High ethylene production slackens seed filling in compact panicled rice cultivar. Plant Growth Regul 58:141–151

    CAS  Google Scholar 

  • Parry MAJ, Reynolds M, Salvucci ME, Raines C, Andralojc PJ, Zhu X-G, Price GD, Condon AG, Furbank RT (2011) Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J Exp Bot 62:453–467

    CAS  PubMed  Google Scholar 

  • Parry MAJ, Andralojc PJ, Scales JC et al (2012) Rubisco activity and regulation as targets for crop improvement. J Exp Bot 64:717–730

  • Paulus JK, Niehus C, Groth G (2013) Evolution of C4 phosphoenolpyruvate carboxylase—enhanced feedback inhibitor tolerance is determined by a single residue. Mol Plant. doi:10.1093/mp/sst078

    Google Scholar 

  • Peleg Z, Fahima T, Korol AB, Abbo S, Saranga Y (2011) Genetic analysis of wheat domestication and evolution under domestication. J Exp Bot. doi:10.1093/jxb/err206

    PubMed Central  PubMed  Google Scholar 

  • Peng S, Laza RC, Visperas RM et al (2000) Grain yield of rice cultivars and lines developed in the Philippines since 1966. Crop Sci 40:307

  • Peterhansel C, Niessen M, Kebeish RM (2008) Metabolic engineering towards the enhancement of photosynthesis. Photochem Photobiol 84:1317–1323

    CAS  PubMed  Google Scholar 

  • Peterson DM, Housley T, Luk T (1982) Oat stem vascular size in relation to kernel number and weight II. Field environment. Crop Sci 22:274–278

    Google Scholar 

  • Piao Z, Li M, Li P et al (2009) Bayesian dissection for genetic architecture of traits associated with nitrogen utilization efficiency in rice. Afr J Biotechnol 8:6834–6839

  • Pont C, Murat F, Confolent C, Balzergue S, Salse J (2011) RNA-seq in grain unveils fate of neo- and paleopolyploidization events in bread wheat (Triticum aestivum L.). Genome Biol 12(12):R119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pont C, Murat F, Guizard S, Flores R, Foucrier S, Bidet Y, Quraishi UM, Alaux M, Doležel J, Fahima T, Budak H, Keller B, Salvi S, Maccaferri M, Steinbach D, Feuillet C, Quesneville H, Salse J (2013) Wheat syntenome unveils new evidences of contrasted evolutionary plasticity between paleo- and neoduplicated subgenomes. Plant J. 76(6):1030–1044

    CAS  PubMed  Google Scholar 

  • Poorter H, van Rijn CPE, Vanhala TK, Verhoeven KJF, de Jong YEM, Stam P, Lambers JT (2005) A genetic analysis of relative growth rate and underlying components in Hordeum spontaneum. Oecologia 142:360–377

    PubMed  Google Scholar 

  • Portis AR, Li C, Wang D, Salvucci ME (2008) Regulation of Rubisco activase and its interaction with Rubisco. J Exp Bot 59:1597–1604

    CAS  PubMed  Google Scholar 

  • Pudelski B, Schock A, Hoth S, Radchuk R, Weber H, Hofmann J, Sonnewald U, Soll J, Philippar K (2012) The plastid outer envelope protein OEP16 affects metabolic fluxes during ABA-controlled seed development and germination. J Exp Bot 63:1919–1936

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qiu X, Gong R, Tan Y, Yu S (2012) Mapping and characterization of the major quantitative trait locus qSS7 associated with increased length and decreased width of rice seeds. Theor Appl Genet. doi:10.1007/s00122-012-1948-x

    Google Scholar 

  • Quarrie S, Pekic Quarrie S, Radosevic R, Rancic D, Kaminska A, Barnes J, Leverington M, Ceoloni C, Dodig D (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57:2627–2637

    CAS  PubMed  Google Scholar 

  • Quraishi Masood M, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N, Confolent C, Bortolini F, Praud S, Murigneux M, Charmet G, Salse J (2009) Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genomics 9(4):473–484

    Google Scholar 

  • Quraishi UM, Abrouk M, Murat F, Pont C, Foucrier S, Desmaizieres G, Confolent C, Rivière N, Charmet G, Paux E, Murigneux A, Guerreiro L, Lafarge S, Le Gouis J, Feuillet C, Salse J (2011a) Cross-genome map based dissection of a nitrogen use efficiency ortho-metaQTL in bread wheat unravels concerted cereal genome evolution. Plant J 65(5):745–756

    CAS  PubMed  Google Scholar 

  • Quraishi UM, Murat F, Abrouk M, Pont C, Confolent C, Oury FX, Ward J, Boros D, Gebruers K, Delcour JA, Courtin CM, Bedo Z, Saulnier L, Guillon F, Balzergue S, Shewry PR, Feuillet C, Charmet G, Salse J (2011b) Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Funct Integr Genomics 11(1):71–83

    CAS  PubMed  Google Scholar 

  • Radley M (1978) Factors affecting grain enlargement in wheat. J Exp Bot 29:919–934

    CAS  Google Scholar 

  • Ren J, Sun D, Chen L et al (2013) Genetic diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of durum wheat. Int J Mol Sci 14(4):7061–7088

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MAJ, Snape JW, Angus WJ (2009) Raising yield potential in wheat. J Exp Bot 60:1899–1918

    CAS  PubMed  Google Scholar 

  • Reynolds M, Bonnett D, Chapman SC, Furbank RT, Manès Y, Mather DE, Parry MAJ (2010) Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. J Exp Bot 62:439–452

    PubMed  Google Scholar 

  • Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G (2012) Achieving yield gains in wheat. Plant Cell Environ. doi:10.1111/j.1365-3040.2012.02588.x

    PubMed  Google Scholar 

  • Richards RA (2000) Selectable traits to increase crop photosynthesis and yield of grain crops. J Exp Bot 51:447–458

    CAS  PubMed  Google Scholar 

  • Ristic Z, Momcilovic I, Bukovnik U et al (2009) Rubisco activase and wheat productivity under heat-stress conditions. J Exp Bot 60:4003–4014

  • Rizal G, Karki S, Thakur V, Chartterjee J, Coe RA, Wanchana S, Quick WP (2012) Towards a C$ rice. Asian J Cell Biol 7:13–31

    CAS  Google Scholar 

  • Rolletschek H, Melkus G, Grafahrend-Belau E, Fuchs J, Heinzel N, Schreiber F, Jakob PM, Borisjuk L (2011) Combined noninvasive imaging and modeling approaches reveal metabolic compartmentation in the barley endosperm. Plant Cell 23:3041–3054

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosegrant M, Agcaoili M (2010) Global food demand, supply and price prospects to 2010. International food policy Research Institute, Washington, DC

    Google Scholar 

  • Rowe HC, Hansen BG, Halkier BA, Kliebenstein DJ (2008) Biochemical networks and epistasis shape the Arabidopsis thaliana metabolome. Plant Cell 20:1199–1216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao RP, Boerjan W, Rohde A (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19:2370–2390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sabouri H, Sabouri A, Dadras AR (2009) Genetic dissection of biomass production, harvest index and panicle characteristics in indica-indica crosses of Iranian rice (Oryza sativa L.) cultivars. Aust J Crop Sci 3:155–166

    Google Scholar 

  • Sage TL, Sage RF (2009) The functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice. Plant Cell Physiol 50:756–772

    CAS  PubMed  Google Scholar 

  • Saintenac C, Jiang D, Akhunov E (2011a) Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome Biol 12:R88

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saintenac C, Jiang D, Akhunov ED (2011b) Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome Biol 12(9):R88

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saito H, Ogiso-Tanaka E, Okumoto Y, Yoshitake Y, Izumi H, Yokoo T, Matsubara K, Hori K, Yano M, Inoue H et al (2012) Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor gene Ghd7 under both short- and long-day conditions. Plant Cell Physiol 53:717–728

    CAS  PubMed  Google Scholar 

  • Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S et al (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24:105–109

    CAS  PubMed  Google Scholar 

  • Salem KFM, Röder MS, Börner A (2007) Identification and mapping quantitative trait loci for stem reserve mobilisation in wheat (Triticum aestivum L.). Cereal Res Commun 35:1367–1374

    Google Scholar 

  • Salse J (2012a) In silico archeogenomics unveils modern plant genome organization, regulation and evolution. Curr Opin Plant Biol 15(2):122–130

    CAS  PubMed  Google Scholar 

  • Salse J (2012b) Paleogenomics as a guide for traits improvement. Genomics platforms, crop domestication and allele mining in ‘advances in genomics of plant genetic resources’, vol 1. Springer, Berlin, in press

  • Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, Calcagno T, Cooke R, Delseny M, Feuillet C (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20:11–24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS et al (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701–702

    CAS  PubMed  Google Scholar 

  • Sato Y, Sentoku N, Miura Y, Hirochika H, Kitano H, Matsuoka M (1999) Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO J 18:992–1002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L, Zamir D, Fernie AR (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454

    CAS  PubMed  Google Scholar 

  • Schmitz J, Franzen R, Ngyuen T, Garcia-marota F, Pozzi C, Salamini F, Rohde W (2000) Cloning, mapping and expression analysis of barley MADS-box genes. Plant Mol Biol 42:899–913

    CAS  PubMed  Google Scholar 

  • Sehnke PC, Chung H-J, Wu K, Ferl RJ (2001) Regulation of starch accumulation by granule-associated plant 14-3-3 proteins. Proc Natl Acad Sci 98:765–770

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheehy JE, Mitchell PL, Hardy B (2007) Charting new pathways to C4 rice. Int Rice Res Inst, Metro Manila

    Google Scholar 

  • Shi T, Bibby TS, Jiang L, Irwin AJ, Falkowski PG (2005) Protein interactions limit the rate of evolution of photosynthetic genes in Cyanobacteria. Mol Biol Evol 22(11):2179–2189

    CAS  PubMed  Google Scholar 

  • Shi Z, Wang J, Wan X, Shen G, Wang X, Zhang J (2007) Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta 226:99–108

    CAS  PubMed  Google Scholar 

  • Shingaki-Wells RN, Huang S, Taylor NL, Carroll AJ, Zhou W, Millar AH (2011) Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance. Plant Physiol 156:1706–1724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shitsukawa N, Kinjo H, Takumi S, Murai K (2009) Heterochronic development of the floret meristem determines grain number per spikelet in diploid, tetraploid and hexaploid wheats. Ann Bot 104:243–251

    PubMed Central  PubMed  Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028

    CAS  PubMed  Google Scholar 

  • Simons KJ, Fellers JP, Trick HN, Zhang Z, Tai Y-S, Gill BS, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skillman JB, Griffin KL, Earll S, Kusama M (2011) Photosynthetic productivity: can plants do better? In: Pirajin JCM (ed) Thermodynamics—systems in equilibrium and non-equilibrium. InTech, Shangai, pp 36–68

    Google Scholar 

  • Slafer GA, Abeledo LG, Miralles DJ, Gonzalez FG, Whitechurch EM (2001) Photoperiod sensitivity during stem elongation as an avenue to raise potential yield in wheat. Euphytica 119:191–197

    Google Scholar 

  • Slattery RA, Ainsworth EA, Ort DR (2013) A meta-analysis of responses of canopy photosynthetic conversion efficiency to environmental factors reveals major causes of yield gap. J Exp Bot. doi:10.1093/jxb/ert207

    PubMed  Google Scholar 

  • Smillie IRA, Pyke KA, Murchie EH (2012) Variation in vein density and mesophyll cell architecture in a rice deletion mutant population. J Exp Bot. doi:10.1093/jxb/ers142

    PubMed Central  PubMed  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu M-Z, Lin H-X (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    CAS  PubMed  Google Scholar 

  • Song JM, Dai S, Li H-S, Liu A-F, Cheng D-G, Chu X-S, Ian JT, Michael JE (2009) Expression of a wheat endosperm 14-3-3 protein and its interactions with starch biosynthetic enzymes in amyloplasts. Acta Agron Sin 35:1445–1550

    CAS  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin, Mahmoud A, Ma X, Gustafson PJ et al (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci 99:9043–9048

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sreenivasulu N, Schnurbusch T (2012) A genetic playground for enhancing grain number in cereals. Trends Plant Sci 17:91–101

    CAS  PubMed  Google Scholar 

  • Steinfath M, Strehmel N, Peters R, Schauer N, Groth D, Hummel J, Steup M, Selbig J, Kopka J, Geigenberger P, van Dongen JT (2010) Discovering plant metabolic biomarkers for phenotype prediction using an untargeted approach. Plant Bitechol J 8:900–911

    CAS  Google Scholar 

  • Stitt M, Lunn J, Usadel B (2010) Arabidopsis and primary photosynthetic metabolism—more than the icing on the cake. Plant J 61:1067–1091

    CAS  PubMed  Google Scholar 

  • Su Z, Hao C, Wang L, Dong Y, Zhang X (2011) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat. Theor Appl Genet 122:211–223

    CAS  PubMed  Google Scholar 

  • Sudo E, Makino A, Mae T (2003) Differences between rice and wheat in RuBP regeneration capacity per unit of leaf nitrogen content. Plant Cell Environ 3:255–263

    Google Scholar 

  • Sulpice R, Trenkamp S, Steinfath M, Usadel B, Gibon Y, Witucka-Wall H, Pyl ET, Tschoep H, Steinhauser MC, Guenther M, Hoehne M, Rohwer JM, Altmann T, Fernie AR, Stitt M (2010) Network analysis of enzyme activities and metabolite levels and their relationship to biomass in a large panel of arabidopsis accessions. Plant Cell 22:2872–2893

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki Y, Makino A (2013) Availability of Rubisco small subunit up-regulates the transcript levels of large subunit for stoichiometric assembly of its holoenzyme in rice. Plant Physiol 160:533–540

    Google Scholar 

  • Suzuki Y, Ohkubo M, Hatakeyama H, Ohashi K, Yoshizawa R, Kojima S, Hayakawa T, Yamaya T, Mae T, Makino A (2007) Increased Rubisco content in transgenic rice transformed with the “sense” rbcS gene. Plant Cell Physiol 48:626–637

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Miyamoto T, Yoshizawa R, Mae T, Makino A (2009) Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of RBCS. Plant Cell Environ 32:417–427

    CAS  PubMed  Google Scholar 

  • Takahashi Y, Teshima KM, Yokoi S, Innan H, Shimamoto K (2009) Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proc Natl Acad Sci 106:4555–4560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K et al (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182:1323–1334

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takeuchi Y, Ebitani T, Yamamoto T, Sato H, Ohta H, Hirabayashi H, Kato H, Ando I, Nemoto H, Imbe T et al (2006) Development of isogenic lines of rice cultivar Koshihikari with early and late heading by marker-assisted selection. Breed Sci 56:405–413

    CAS  Google Scholar 

  • Tamoi M, Nagaoka M, Miyagawa Y, Shigeoka S (2006) Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the calvin cycle in transgenic plants. Plant Cell Physiol 47:380–390

    CAS  PubMed  Google Scholar 

  • Tan YF, Xing YZ, Li JX, Yu SB, Xu CG, Zhang Q (2000) Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. TAG Theor Appl Genet 101:823–829

    CAS  Google Scholar 

  • Tang G, Galili G, Zhunag X (2007) RNAi and microRNA: breakthrough technologies for the improvement of plant nutritional value and metabolic engineering. Metabolomics 3:357–369

    CAS  Google Scholar 

  • Tang T, Xie H, Wang Y, Lü B, Liang J (2009) The effect of sucrose and abscisic acid interaction on sucrose synthase and its relationship to grain filling of rice (Oryza sativa L.). J Exp Bot 60:2641–2652

    CAS  PubMed  Google Scholar 

  • Taniguchi Y, Ohkawa H, Masumoto C et al (2008) Overproduction of C4 photosynthetic enzymes in transgenic rice plants: an approach to introduce the C4-like photosynthetic pathway into rice. J Exp Bot 59:1799–1809

    CAS  PubMed  Google Scholar 

  • Tasleem-Tahir A, Nadaud I, Girousse C, Martre P, Marion D, Branlard G (2011) Proteomic analysis of peripheral layers during wheat (Triticum aestivum L.) grain development. Proteomics 11:371–379

    CAS  PubMed  Google Scholar 

  • Teng S, Qian Q, Zeng D, Kunihiro Y, Fujimoto K, Huang D, Zhu L (2004) QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.). Euphytica 135:1–7

    CAS  Google Scholar 

  • ter Steege MW, den Ouden FM, Lambers H, Stam P, Peeters AJM (2005) Genetic and physiological architecture of early Vigor in Aegilops tauschii, the D-genome donor of hexaploid wheat. A quantitative trait loci analysis. Plant Physiol 139:1078–1094

    PubMed Central  PubMed  Google Scholar 

  • This D, Borries C, Souyris I, Teulat B (2000) QTL study of chlorophyll content as a genetic parameter of drought tolerance in barley. Barley Genet Newsl. http://grain.jouy.inra.fr/ggpages/bgn/30/dt2_2.htm

  • Tholen D, Boom C, Zhu X-G (2012) Opinion: prospects for improving photosynthesis by altering leaf anatomy. Plant Sci 197:92–101

    CAS  PubMed  Google Scholar 

  • Thomson M, Tai T, McClung A, Lai X, Hinga M, Lobos K, Xu Y, Martinez C, McCouch S (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493

    CAS  PubMed  Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ, Hung H, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

    CAS  PubMed  Google Scholar 

  • Tiwari S, Spielman M, Schulz R, Oakay R, Kelsey G, Salazar A, Zhang K, Pennell R, Scott R (2010) Transcriptional profiles underlying parent-of-origin effects in seeds of Arabidopsis thaliana. BMC Plant Biol 10:72

    PubMed Central  PubMed  Google Scholar 

  • Toojinda T, Siangliw M, Tragoonrung S, Vanavichit A (2003) Molecular genetics of submergence tolerance in rice: QTL analysis of key traits. Ann Bot 91:243–253

    CAS  PubMed  Google Scholar 

  • Trebbi D, Maccaferri M, de Heer P, Sørensen A, Giuliani S, Salvi S, Sanguineti MC, Massi A, van der Vossen EA, Tuberosa R (2011) High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). Theor Appl Genet 123(4):555–569

    PubMed  Google Scholar 

  • Tsukaya H (2005) Leaf shape: genetic controls and environmental factors. Int J Dev Biol 49:547–555

    PubMed  Google Scholar 

  • Tsukaya H (2006) Mechanism of leaf shape determination. Annu Rev Plant Biol 57:477–496

  • Uauy C, Brevis JC, Dubcovsky J (2006) The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J Exp Bot 57:2785–2794

    CAS  PubMed  Google Scholar 

  • Valárik M, Linkiewicz AM, Dubcovsky J (2006) A microcolinearity study at the earliness per se gene Eps-A m 1 region reveals an ancient duplication that preceded the wheat–rice divergence. Theor Appl Genet 112:945–957

    PubMed  Google Scholar 

  • Vega-Sánchez ME, Zeng L, Chen S, Leung H, Wang G-L (2008) SPIN1, a K homology domain protein negatively regulated and ubiquitinated by the E3 ubiquitin ligase SPL11, is involved in flowering time control in rice. Plant Cell 20:1456–1469

    PubMed Central  PubMed  Google Scholar 

  • Vensel WH, Tanaka CK, Cai N, Wong JH, Buchanan BB, Hurkman WJ (2005) Developmental changes in the metabolic protein profiles of wheat endosperm. Proteomics 5:1594–1611

    CAS  PubMed  Google Scholar 

  • Verma V, Worland A, Savers E, Fish L, Caligari P, Snape J (2008) Identification and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat. Plant Breed 124:234–241

    Google Scholar 

  • Wagner G, Charton S, Lariagon C, Laperche A, Lugan R, Hopkins J, Frendo P, Bouchereau A, Delourme R, Gravot A, Manzanares-Dauleux MJ (2012) Metabotyping: a new approach to investigate rapeseed genetic diversity in the metabolic response to clubroot infection. Mol Plant Microb Interact 25:1478–1491

    CAS  Google Scholar 

  • Wan X, Weng J, Zhai H, Wang J, Lei C, Liu X, Guo T, Jiang L, Su N, Wan J (2008a) Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics 179:2239–2252

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wan Y, Poole R, Huttly A, Toscano-Underwood C, Feeney K, Welham S, Gooding M, Mills C, Edwards K, Shewry P et al (2008b) Transcriptome analysis of grain development in hexaploid wheat. BMC Genomics 9:121

    PubMed Central  PubMed  Google Scholar 

  • Wang H (2009) QTL mapping of flag-leaf stage, heading date, and photoperiod-thermo sensitive genic male sterility of wheat. PhD Thesis, China.

  • Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H et al (2008a) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40:1370–1374

    CAS  PubMed  Google Scholar 

  • Wang RX, Hai L, Zhang XY, You GX, Yan CS, Xiao SH (2008b) QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theor Appl Genet 118:313–325

    PubMed  Google Scholar 

  • Wang Y, Dai G, Ryu O et al (2010) QTL analysis on nitrogen uptake and related traits at seedling stage in rice. Chin J Rice Sci 24:463–468

  • Wang Z, Xu Y, Wang J, Yang J, Zhang J (2011) Polyamine and ethylene interactions in grain filling of superior and inferior spikelets of rice. Plant Growth Regul 66:215–228

    Google Scholar 

  • Wang J, Luo MC, Chen Z, You FM, Wei Y, Zheng Y, Dvorak J (2013) Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol 198(3):925–937

    CAS  PubMed  Google Scholar 

  • Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X et al (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18:1199–1209

    CAS  PubMed  Google Scholar 

  • Whitney SM, Sharwood RE, Orr D, White SJ, Alonso H, Galmés J (2011) Isoleucine 309 acts as a C4 catalytic switch that increases ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) carboxylation rate in Flaveria. Proc Natl Acad Sci 108:14688–14693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Winfield MO, Wilkinson PA, Allen AM et al (2012) Targeted re-sequencing of the allohexaploid wheat exome. Plant Biotechol J. 10(6):733–742

    CAS  Google Scholar 

  • Wu W, Zheng X-M, Lu G, Zhong Z, Gao H, Chen L, Wu C, Wang H-J, Wang Q, Zhou K et al (2013) Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proc Natl Acad Sci. doi:10.1073/pnas.1213962110

    Google Scholar 

  • Wullschleger S (1993) Biochemical limitations to carbon assimilation in C3 plants—a retrospective analysis of the A/Ci curves from 109 species. J Exp Bot 44:907–920

    CAS  Google Scholar 

  • Wu-Yun Y, Bei-Hua W, Xiao-Rong H, Yi Y, Yong Z (1999) Inheritance in hexaploid wheat of genes for hairy auricles and hairy leaf sheath derived from Aegilops tauschii Coss. Gen Res Crop Evol 46:319–323

    Google Scholar 

  • Xing Y, Zhang Q (2010) Genetic and molecular bases of rice yield. Ann Rev Plant Biol 61:421–442

    CAS  Google Scholar 

  • Xing Y, Tan Y, Hua J, Sun X, Xu C, Zhang X (2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet 105:248–257

    CAS  PubMed  Google Scholar 

  • Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genomics 43:461–469

    CAS  Google Scholar 

  • Yaish MW, El-kereamy A, Zhu T, Beatty PH, Good AG, Bi Y-M, Rothstein SJ (2010) The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice. PLoS Genet 6:e1001098

    PubMed Central  PubMed  Google Scholar 

  • Yamamoto T, Lin H, Sasaki T, Yano M (2000) Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics 154:885–891

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamori W, Takahashi S, Makino A, Price GD, Badger MR, von Caemmerer S (2011) The roles of ATP synthase and the cytochrome b6/f complexes in limiting chloroplast electron transport and determining photosynthetic capacity. Plant Physiol 155:956–962

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci 100:6263–6268

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci 103:19581–19586

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yan L, Zhang KP, Zhao LA, Liang X, Zhang WT, Sun XL, Meng QW, Tian JC, Zhao SJ (2010a) Analysis of QTLs associated with photosynthesis characteristics in wheat seedlings. Acta Agron Sin 36:267–275

    Google Scholar 

  • Yan S, Li W, Yin Y, Wang Z (2010b) Sink strength in relation to growth of superior and inferior grains within a wheat spike. J Agric Sci 148:567–578

    Google Scholar 

  • Yang J, Zhang J, Liu K, Wang Z, Liu L (2006a) Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling. New Phytol 171:293–303

    CAS  PubMed  Google Scholar 

  • Yang J, Zhang J, Wang Z, Liu K, Wang P (2006b) Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. J Exp Bot 57:149–160

    CAS  PubMed  Google Scholar 

  • Yang D, Jing R, Chang X, Li W (2007) Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum). J Integr Plant Biol 49:646–654

    CAS  Google Scholar 

  • Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T (1997) Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet 95:1025–1032

    CAS  Google Scholar 

  • Yano M, Kojima S, Takahashi Y, Lin H, Sasaki T (2001) Genetic control of flowering time in rice, a short-day plant. Plant Physiol 127:1425–1429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yin Y, Kropff M, Ynalvez M (1997) Photoperiodically sensitive and insensitive phases of preflowering development in rice. Crop Sci 37:182–190

    Google Scholar 

  • Ying JZ, Shan JX, Gao JP, Zhu MZ, Shi M, Lin HX (2011) Identification of quantitative trait loci for lipid metabolism in rice seeds. Mol Plant 5(4):865–875

    PubMed  Google Scholar 

  • Yoshida S (1981) Fundamentals of rice crop science. International Rice Research Institute, Phillipines

    Google Scholar 

  • Yoshida H, Horie T, Shiraiwa T (2006) A model explaining genotypic and environmental variation of rice spikelet number per unit area measured by cross-locational experiments in Asia. Field Crops Res 97:337–343

    Google Scholar 

  • You FM, Huo N, Deal KR, Gu YQ, Luo MC, McGuire PE, Dvorak J, Anderson OD (2011) Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence. BMC Genome 12:59

    CAS  Google Scholar 

  • Young T, Gallie D (1999) Analysis of programmed cell death in wheat endosperm reveals differences in endosperm development between cereals. Plant Mol Biol 39:915–926

    CAS  PubMed  Google Scholar 

  • Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q, Maroof MAS (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci 94:9226–9231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu Y, Huang Y, Zhang W (2012) Changes in rice yields in China since 1980 associated with cultivar improvement, climate and crop management. Field Crops Res 136:65–75

    Google Scholar 

  • Yue B, Xue WY, Luo LJ, Xing YZ (2006) QTL analysis for flag leaf characteristics and their relationships with yield and yield traits in rice. Acta Genet Sin 33:824–832

    CAS  PubMed  Google Scholar 

  • Zalewski W, Galuszka P, Gasparis S, Orczyk W, Nadolska-Orczyk A (2010) Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity. J Exp Bot 61:1839–1851

    CAS  PubMed  Google Scholar 

  • Zeng D, Hu J, Dong G, Liu J, Zeng L, Zhang G, Guo L, Zhou Y, Qian Q (2009) Quantitative trait loci mapping of flag-leag ligule length in rice and alignment with ZmLG1 gene. J Integr Plant Biol 51:360–366

    CAS  PubMed  Google Scholar 

  • Zhang Z-H, Li P, Wang L-X, Hu Z-L, Zhu L-H, Zhu Y-G (2004) Genetic dissection of the relationships of biomass production and partitioning with yield and yield related traits in rice. Plant Sci 167:1–8

    CAS  Google Scholar 

  • Zhang H, Li J, Yoo JH et al (2006) Rice chlorina-1 and chlorine-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol 62:325–337

    CAS  PubMed  Google Scholar 

  • Zhang XK, Xiao YG, Zhang Y, Xia XC, Dubcovsky J, He ZH (2008) Allelic variation at the vernalization genes and in chinese wheat cultivars and their association with growth habit. Crop Sci 48:458

    CAS  Google Scholar 

  • Zhang K, Zhang Y, Chen G, Tian J (2009) Genetic analysis of grain yield and leaf chlorophyll content in common wheat. Cereal Res Commun 37:499–511

    CAS  Google Scholar 

  • Zhang H, Liang W, Yang X, Luo X, Jiang N, Ma H, Zhang D (2010a) Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. Plant Cell 22:672–689

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Liu W, Yang X, Gao A, Li X, Wu X, Li L (2010b) Isolation and characterization of two putative cytokinin oxidase genes related to grain number per spike phenotype in wheat. Mol Biol Rep 38:2337–2347

    PubMed  Google Scholar 

  • Zhang X, Chen J, Shi C, Chen J, Zheng F, Tian J (2013) Function of TaGW2-6A and its effect on grain weight in wheat. Euphytica 192:347–357

    CAS  Google Scholar 

  • Zhao BH, Liu K, Zhang HX, Zhu QS, Yang JC (2007) Causes of poor grain plumpness of two-line hybrids and their relationships to the contents of hormones in the rice grain. Agric Sci China 6:930–940

    CAS  Google Scholar 

  • Zheng-Bin Z, Xu P, Jia JZ, Zhou RH (2010) Quantitative trait loci for leaf chlorophyll fluorescence traits in wheat. Aust J Crop Sci 4:571–579

    Google Scholar 

  • Zhu T, Budworth P, Chen W, Provart N, Chang H, Guimil S, Su W, Estes B, Zou G, Wang X (2003) Transcriptional control of nutrient partitioning during rice grain filling. Plant Biotechnol J 1:59–70

    CAS  PubMed  Google Scholar 

  • Zhu X-G, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261

    CAS  PubMed  Google Scholar 

  • Zhu G, Ye N, Yang J, Peng X, Zhang J (2011) Regulation of expression of starch synthesis genes by ethylene and ABA in relation to the development of rice inferior and superior spikelets. J Exp Bot 62:3907–3916

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhuang J, Chen J-M, Yao Q-H, Xiong F, Sun C–C, Zhou X-R, Zhang J, Xiong A-S (2010) Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum. Mol Biol Rep 38:745–753

    PubMed  Google Scholar 

  • Zou L, Sun X, Zhang Z, Liu P, Wu J, Tian C, Qiu J, Lu T (2011) Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice. Plant Physiol 156:1589–1602

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zuber U, Winzeler H, Messmer M, Keller M, Keller B, Schmid J, Stamp P (2001) Morphological traits associated with lodging resistance of spring wheat (Triticum aestivum L.). J Agron Crop Sci 182:17–24

    Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Valluru.

Additional information

Communicated by Rajeev K. Varshney.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valluru, R., Reynolds, M.P. & Salse, J. Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat. Theor Appl Genet 127, 1463–1489 (2014). https://doi.org/10.1007/s00122-014-2332-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2332-9

Keywords

Navigation