Skip to main content

Advertisement

Log in

Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A stable QTL that may be used in marker-assisted selection in wheat breeding programs was detected for yield, yield components and drought tolerance-related traits in spring wheat association mapping panel.

Abstract

Genome-wide association mapping has become a widespread method of quantitative trait locus (QTL) identification for many crop plants including wheat (Triticum aestivum L.). Its benefit over traditional bi-parental mapping approaches depends on the extent of linkage disequilibrium in the mapping population. The objectives of this study were to determine linkage disequilibrium decay rate and population structure in a spring wheat association mapping panel (n = 285–294) and to identify markers associated with yield and yield components, morphological, phenological, and drought tolerance-related traits. The study was conducted under fully irrigated and rain-fed conditions at Greeley, CO, USA and Melkassa, Ethiopia in 2010 and 2011 (five total environments). Genotypic data were generated using diversity array technology markers. Linkage disequilibrium decay rate extended over a longer genetic distance for the D genome (6.8 cM) than for the A and B genomes (1.7 and 2.0 cM, respectively). Seven subpopulations were identified with population structure analysis. A stable QTL was detected for grain yield on chromosome 2DS both under irrigated and rain-fed conditions. A multi-trait region significant for yield and yield components was found on chromosome 5B. Grain yield QTL on chromosome 1BS co-localized with harvest index QTL. Vegetation indices shared QTL with harvest index on chromosome 1AL and 5A. After validation in relevant genetic backgrounds and environments, QTL detected in this study for yield, yield components and drought tolerance-related traits may be used in marker-assisted selection in wheat breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdurakhmonov I, Abdukarimov A (2008) Application of association mapping to understanding the genetic diversity of plant germplasm resources. In J Plant Genom. doi:10.1155/2008/574927

    Google Scholar 

  • Adhikari TB, Gurung S, Hansen JM, Jackson EW, Bonman JM (2012) Association mapping of quantitative trait loci in spring wheat landraces conferring resistance to bacterial leaf streak and spot blotch. Plant Genome 5:1–16. doi: 10.3835/plantgenome2011.12.0032

    Article  Google Scholar 

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang SY, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420. doi: 10.1007/s00122-006-0365-4

    Google Scholar 

  • Alexander LM, Kirigwi FM, Fritz AK, Fellers JP (2012) Loci analysis of drought tolerance in a spring wheat population using amplified fragment length polymorphism and diversity array technology markers. Crop Sci 52:253–261

    Article  Google Scholar 

  • Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27:377–412. doi:905611485

    Article  Google Scholar 

  • Bagge M, Xia XC, Lubberstedt T (2007) Functional markers in wheat—commentary. Curr Opin Plant Biol 10:211–216. doi:101016/jpbi200701009

    Article  PubMed  CAS  Google Scholar 

  • Barnabas B, Jager K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38. doi:101111/j1365-3040200701727x

    PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57(1):289–300

    Google Scholar 

  • Benson J, Brown-Guedira G, Murphy JP, Sneller C (2012) Population structure, linkage disequilibrium, and genetic diversity in soft winter wheat enriched for fusarium head blight resistance. Plant Genome 5:71–80. doi:103835/plantgenome2011110027

    Article  CAS  Google Scholar 

  • Borner A, Schumann E, Furste A, Coster H, Leithold B, Roder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936. doi:101007/s00122-002-0994-1

    Article  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635. doi:101093/bioinformatics/btm308

    Article  PubMed  CAS  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177. doi:101534/genetics105044586

    Article  PubMed Central  PubMed  Google Scholar 

  • Cadalen T, Boeuf C, Bernard S, Bernard M (1997) An intervarietal molecular marker map in Triticum aestivum L em Thell and comparison with a map from a wide cross. Theor Appl Genet 94:367–377. doi:101007/s001220050425

    Article  CAS  Google Scholar 

  • Casadesus J, Kaya Y, Bort J, Nachit MM, Araus JL, Amor S, Ferrazzano G, Maalouf F, Maccaferri M, Martos V, Ouabbou H, Villegas D (2007) Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water-limited environments. Ann Appl Biol 150:227–236. doi:101111/j1744-7348200700116x

    Article  Google Scholar 

  • Chao SM, Zhang WJ, Dubcovsky J, Sorrells M (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among US wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci 47:1018–1030. doi:102135/cropsci2006060434

    Article  CAS  Google Scholar 

  • Chao SM, Dubcovsky J, Dvorak J, Luo MC, Baenziger SP, Matnyazov R, Clark DR, Talbert LE, Anderson JA, Dreisigacker S, Glover K, Chen JL, Campbell K, Bruckner PL, Rudd JC, Haley S, Carver BF, Perry S, Sorrells ME, Akhunov ED (2010) Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genom 11:727 doi:10.1186/1471-2164-11-727 (Artn 727)

  • Cleveland WS (1979) Robust locally-weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836

    Article  Google Scholar 

  • Collins NC, Shirley NJ, Saeed M, Pallotta M, Gustafson JP (2008) An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). Genetics 179:669–682. doi:101534/genetics107083451

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Comadran J, Thomas WTB, van Eeuwijk FA, Ceccarelli S, Grando S, Stanca AM, Pecchioni N, Akar T, Al-Yassin A, Benbelkacem A, Ouabbou H, Bort J, Romagosa I, Hackett CA, Russell JR (2009) Patterns of genetic diversity and linkage disequilibrium in a highly structured Hordeum vulgare association-mapping population for the Mediterranean basin. Theor Appl Genet 119:175–187. doi:101007/s00122-009-1027-0

    Article  PubMed  CAS  Google Scholar 

  • Cooper M, van Eeuwijk FA, Hammer GL, Podlich DW, Messina C (2009) Modeling QTL for complex traits: detection and context for plant breeding. Curr Opin Plant Biol 12:231–240. doi:101016/jpbi200901006

    Article  PubMed  CAS  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913. doi:101534/genetics107078659

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cuthbert JL, Somers DJ, Brule-Babel AL, Brown PD, Crow GH (2008) Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet 117:595–608. doi:10.1007/s00122-008-0804-5

    Google Scholar 

  • Dodig D, Zoric M, Kobiljski B, Savic J, Kandic V, Quarrie S, Barnes J (2012) Genetic and association mapping study of wheat gronomic traits under contrasting water Regimes. Int J Mol Sci 13:6167–6188. doi:103390/Ijms13056167

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ellis M, Bonnett D, Rebetzke G (2007) A 192 bp allele at the Xgwm261 locus is not always associated with the Rht8 dwarfing gene in wheat (Triticum aestivum L.). Euphytica 157:209–214

    Article  CAS  Google Scholar 

  • Ersoz E, Yu J, Buckler E (2009) Applications of linkage disequilibrium and association mapping in maize. In: Kriz AL, Larkins BA (eds) Molecular genetic approaches to maize improvement 173, vol. 63. Biotechnology in Agriculture and Forestry

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:101111/j1365-294X200502553x

    Article  PubMed  CAS  Google Scholar 

  • Farooq M, Bramley H, Palta J, Siddique K (2011) Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci 30:491–507

    Article  Google Scholar 

  • Fisher RA, Maurer R (1978) Drought resistance in spring wheat cultivars: I. Grain yield responses. Aust J Agric Res 29:897–912

    Article  Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:3211–3222. doi:101093/Jxb/Erq152

    Article  PubMed  CAS  Google Scholar 

  • Glover KD, Rudd JC, Devkota RN, Hall RG, Jin Y, Rickertsen JR (2006) Registration of ‘Granger’ wheat. Crop Sci 46:1390–1391

    Article  Google Scholar 

  • Green AJ, Berger G, Griffey CA, Pitman R, Thomason W, Balota M, Ahmed A (2012) Genetic yield improvement in soft red winter wheat in the Eastern United States from 1919 to 2009. Crop Sci 52:2097–2108. doi:102135/cropsci2012010026

    Article  Google Scholar 

  • Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390. doi:101046/j1439-0523199900401x

    Article  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485. doi:101007/s11103-005-0257-z

    Article  PubMed  CAS  Google Scholar 

  • Habash DZ, Kehel Z, Nachit M (2009) Genomic approaches for designing durum wheat ready for climate change with a focus on drought. J Exp Bot 60:2805–2815. doi:101093/Jxb/Erp211

    Article  PubMed  CAS  Google Scholar 

  • Hao CY, Perretant MR, Choulet F, Wang LF, Paux E, Sourdille P, Zhang XY, Feuillet C, Balfourier F (2010) Genetic diversity and linkage disequilibrium studies on a 3.1-Mb genomic region of chromosome 3B in European and Asian bread wheat (Triticum aestivum L.) populations. Theor Appl Genet 121:1209–1225. doi:101007/s00122-010-1382-x

    Article  PubMed  CAS  Google Scholar 

  • Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161. doi:101016/jpbi200701003

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Coster H, Ganal MW, Roder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389. doi: 10.1007/s00122-002-1179-7

    Google Scholar 

  • Kollers S, Rodemann B, Ling J, Korzun V, Ebmeyer E, Argillier O, Hinze M, Plieske J, Kulosa D, Ganal MW, Röder MS (2013a) Whole genome association mapping of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.). PLoS ONE 8:e57500

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kollers S, Rodemann B, Ling J, Korzun V, Ebmeyer E, Argillier O, Hinze M, Plieske J, Kulosa D, Ganal MW, Röder MS (2013b) Genetic architecture of resistance to Septoria tritici blotch (Mycosphaerella graminicola) in European winter wheat. Mol Breed 32:411–423

    Article  CAS  Google Scholar 

  • Korzun V, Roder M, Ganal M, Worland A, Law C (1998) Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet 96:1104–1109

    Article  CAS  Google Scholar 

  • Kumar N, Kulwal PL, Balyan HS, Gupta PK (2007) QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed 19:163–177. doi:101007/s11032-006-9056-8

    Article  Google Scholar 

  • Lipka AE, Tian F, Wang QS, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang ZW (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399. doi:101093/bioinformatics/bts444

    Article  PubMed  CAS  Google Scholar 

  • Lopes MS, Reynolds MP (2012) Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. J Exp Bot 63:3789–3798. doi:101093/Jxb/Ers071

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lopes MS, Reynolds MP, Jalal-Kamali MR, Moussa M, Feltaous Y, Tahir ISA, Barma N, Vargas M, Mannes Y, Baum M (2012) The yield correlations of selectable physiological traits in a population of advanced spring wheat lines grown in warm and drought environments. Field Crops Res 128:129–136. doi:101016/jfcr201112017

    Article  Google Scholar 

  • Lopes MS, Reynolds MP, McIntyre CL, Mathews KL, Kamali MRJ, Mossad M, Feltaous Y, Tahir ISA, Chatrath R, Ogbonnaya F, Baum M (2013) QTL for yield and associated traits in the Seri/Babax population grown across several environments in Mexico, in the West Asia, North Africa, and South Asia regions. Theor Appl Genet 126:971–984. doi:101007/s00122-012-2030-4

    Article  PubMed  Google Scholar 

  • Lupton FH (1966) Translocation of photosynthetic assimilates in wheat. Ann Appl Biol 57:355-364. doi: 10.1111/j.1744-7348.1966.tb03829.x

    Google Scholar 

  • Maccaferri M, Sanguineti MC, Mantovani P, Demontis A, Massi A, Ammar K, Kolmer JA, Czembor JH, Ezrati S, Tuberosa R (2010) Association mapping of leaf rust response in durum wheat. Mol Breed 26:189–228. doi:101007/s11032-009-9353-0

    Article  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Demontis A, El-Ahmed A, del Moral LG, Maalouf F, Nachit M, Nserallah N, Ouabbou H, Rhouma S, Royo C, Villegas D, Tuberosa R (2011) Association mapping in durum wheat grown across a broad range of water regimes. J Exp Bot 62:409–438. doi:101093/Jxb/Erq287

    Article  PubMed  CAS  Google Scholar 

  • Marone D, Panio G, Ficco DBM, Russo MA, De Vita P, Papa R, Rubiales D, Cattivelli L, Mastrangelo AM (2012) Characterization of wheat DArT markers: genetic and functional features. Mol Genet Genom 287:741–753. doi:101007/s00438-012-0714-8

    Article  CAS  Google Scholar 

  • Marza F, Bai GH, Carver BF, Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112:688–698. doi: 10.1007/s00122-005-0172-3

  • McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 x 'AC Domain'. Genome 48:870–883

    Google Scholar 

  • McIntyre CL, Mathews KL, Rattey A, Chapman SC, Drenth J, Ghaderi M, Reynolds M, Shorter R (2010) Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor Appl Genet 120:527–541. doi:101007/s00122-009-1173-4

    Article  PubMed  CAS  Google Scholar 

  • Mergoum M, Frohberg RC, Ali S, Singh PK, Rasmussen JB, Miller JD (2006) Registration of spring wheat germplasm ND 735 combining tan spot, leaf, and stem rusts. Crop Sci 46:1003–1004

    Article  Google Scholar 

  • Mir R, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney R (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet. doi:10.1007/s00122-012-1904-9

    PubMed Central  PubMed  Google Scholar 

  • Neumann K, Kobiljski B, Dencic S, Varshney RK, Borner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27:37–58. doi:101007/s11032-010-9411-7

    Article  Google Scholar 

  • Passioura JB (2012) Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct Plant Biol 39:851–859. doi:101071/Fp12079

    Article  Google Scholar 

  • Peng JH, Bai Y, Haley SD, Lapitan NLV (2009) Microsatellite-based molecular diversity of bread wheat germplasm and association mapping of wheat resistance to the Russian wheat aphid. Genetica 135:95–122. doi:101007/s10709-008-9262-x

    Article  PubMed  CAS  Google Scholar 

  • Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021. doi:101007/s00122-010-1351-4

    Article  PubMed Central  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  PubMed  CAS  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring X SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880. doi:101007/s00122-004-1902-7

    Article  PubMed  CAS  Google Scholar 

  • Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ, Varshney RK (2011) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance in groundnut (Arachis hypogaea L.). Theor Appl Genet 122:1119–1132

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Reynolds MP, Manes Y, Izanloo A, Langridge P (2009) Phenotyping for physiological breeding and gene discovery in wheat. Ann Appl Biol 155:309–320

    Article  Google Scholar 

  • Roussel V, Leisova L, Exbrayat F, Stehno Z, Balfourier F (2005) SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor Appl Genet 111:162–170. doi:101007/s00122-005-2014-8

    Article  PubMed  CAS  Google Scholar 

  • Saini HS, Aspinall D (1982) Abnormal sporogenesis in wheat (Triticum aestivum L.) induced by short periods of high temperature. Ann Bot 49:835–846

    Google Scholar 

  • Shen X (2013) Revealing the missing heritability via cross-validated genome wide association studies. Published online at http://arxiv.org/ftp/arxiv/papers/1307/1307.7950.pdf

  • Sinclair TR (2012) Is transpiration efficiency a viable plant trait in breeding for crop improvement? Funct Plant Biol 39:359–365. doi:101071/Fp11198

    Article  Google Scholar 

  • Sorrells M, Yu J (2009) Linkage disequilibrium and association mapping in the Triticeae. In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the triticeae, plant genetics and genomics: crops and models 7:655–683. doi:10.1007/978-387-77489-3_22

  • Spiel Meyer W, McIntosh RA, Kolmer J, Lagudah ES (2005) Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet 111:731–735. doi:101007/s00122-005-2058-9

    Article  CAS  Google Scholar 

  • Wang RX, Hai L, Zhang XY, You GX, Yan CS, Xiao SH (2009) QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theor Appl Genet 118:313–325. doi: 10.1007/s00122-008-0901-5

    Google Scholar 

  • Warburton ML, Crossa J, Franco J, Kazi M, Trethowan R, Rajaram S, Pfeiffer W, Zhang P, Dreisigacker S, van Ginkel M (2006) Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 149:289–301. doi:10.1007/s10681-005-9077-0

    Article  CAS  Google Scholar 

  • Waugh R, Jannink JL, Muehlbauer GJ, Ramsay L (2009) The emergence of whole genome association scans in barley. Curr Opin Plant Biol 12:218–222. doi:101016/jpbi200812007

    Article  PubMed  CAS  Google Scholar 

  • Wilson LM, Whitt SR, Ibanez AM, Rocheford TR, Goodman MM, Buckler ES (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16:2719–2733

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Worland AJ (1996) The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89:49–57

    Article  Google Scholar 

  • Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208. doi:101038/Ng1702

    Article  PubMed  CAS  Google Scholar 

  • Yu LX, Lorenz A, Rutkoski J, Singh RP, Bhavani S, Huerta-Espino J, Sorrells ME (2011) Association mapping and gene–gene interaction for stem rust resistance in CIMMYT spring wheat germplasm. Theor Appl Genet 123:1257–1268. doi:101007/s00122-011-1664-y

    Article  PubMed  CAS  Google Scholar 

  • Yu LX, Liu SX, Anderson JA, Singh RP, Jin Y, Dubcovsky J, Brown-Guidera G, Bhavani S, Morgounov A, He ZH, Huerta-Espino J, Sorrells ME (2012) Haplotype diversity of stem rust resistance loci in uncharacterized wheat lines. Mol Breed 30:613–614. doi:101007/s11032-011-9680-9

    Article  Google Scholar 

  • Zhao HH, Fernando RL, Dekkers JCM (2007) Effects of population structure on power and precision of regression-based linkage disequilibrium mapping of QTL. J Anim Sci 85:63

    Article  CAS  Google Scholar 

  • Zheng S, Byrne PF, Bai GH, Shan XY, Reid SD, Haley SD, Seabourn BW (2009) Association analysis reveals effects of wheat glutenin alleles and rye translocations on dough-mixing properties. J Cereal Sci 50:283–290. doi:10.1016/j.jcs.2009.06.008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was conducted with the financial support from Beachell-Borlaug International Scholarship award to the first author.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This experiment complies with the current laws of the US and Ethiopia where the experiment was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erena A. Edae.

Additional information

Communicated by A. Grane.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 539 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edae, E.A., Byrne, P.F., Haley, S.D. et al. Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor Appl Genet 127, 791–807 (2014). https://doi.org/10.1007/s00122-013-2257-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2257-8

Keywords

Navigation