Theoretical and Applied Genetics

, Volume 126, Issue 11, pp 2803–2824 | Cite as

Variation at the vernalisation genes Vrn-H1 and Vrn-H2 determines growth and yield stability in barley (Hordeum vulgare) grown under dryland conditions in Syria

  • Jarod A. Rollins
  • B. Drosse
  • M. A. Mulki
  • S. Grando
  • M. Baum
  • M. Singh
  • S. Ceccarelli
  • M. von KorffEmail author
Original Paper


Key message

Spring growth in barley controlled by natural variation at Vrn-H1 and Vrn-H2 improved yield stability in marginal Syrian environments.


The objective of the present study was to identify QTL influencing agronomic performance in rain-fed Mediterranean environments in a recombinant inbred line (RIL) population, ARKE derived from the Syrian barley landrace, Arta and the Australian feed cultivar, Keel. The population was field tested for agronomic performance at two locations in Syria for 4 years with two sowing dates, in autumn and winter. Genotypic variability in yield of the RIL population was mainly affected by year-to-year variation presumably caused by inter-annual differences in rainfall distribution. The spring growth habit and early flowering inherited from the Australian cultivar Keel increased plant height and biomass and improved yield stability in Syrian environments. QTL for yield and biomass coincided with the map location of flowering time genes, in particular the vernalisation genes Vrn-H1 and Vrn-H2. In marginal environments with terminal drought, the Vrn-H1 allele inherited from Keel improved final biomass and yield. Under changing climate conditions, such as shorter winters, reduced rainfall, and early summer drought, spring barley might thus outperform the traditional vernalisation-sensitive Syrian landraces. We present the ARKE population as a valuable genetic resource to further elucidate the genetics of drought adaptation of barley in the field.



We are grateful for excellent technical assistance by K. Luxa and E. Luley. This work was supported by the Max Planck Society, the German Plant Genome Research Initiative of the Federal Ministry of Education and Research (BMBF), by grants from the DFG SPP1530 (“Flowering time control: from natural variation to crop improvement”), and by grants to ICARDA from the German Federal Ministry of Economic Cooperation and Development (BMZ, Bonn, Germany), the Generation Challenge Program and the Global Centre of Excellence Program, Tottori University, Japan.

Ethical standards

All experiments described in this manuscript comply with the current laws of the country in which they were performed.

Conflict of interest

The authors declare that they have no conflicts of interests.

Supplementary material

122_2013_2173_MOESM1_ESM.docx (35 kb)
Supplementary material 1 (DOCX 34 kb)
122_2013_2173_MOESM2_ESM.xlsx (455 kb)
Supplementary material 2 (XLSX 454 kb)


  1. Acevedo E, Craufurd P, Austin R, Perez-Marco P (1991) Traits associated with high yield in barley in low-rainfall environments. J Agric Sci 116:23–36CrossRefGoogle Scholar
  2. Alsop BP, Farre A, Wenzl P, Wang JM, Zhou MX, Romagosa I, Kilian A, Steffenson BJ (2011) Development of wild barley-derived DArT markers and their integration into a barley consensus map. Mol Breed 27:77–92CrossRefGoogle Scholar
  3. Atlin GN, Frey KJ (1990) Selecting oat lines for yield in low-productivity environments. Crop Sci 30:556–561CrossRefGoogle Scholar
  4. Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ × H. spontaneum 41-1. Theor Appl Genet 107:1215–1225PubMedCrossRefGoogle Scholar
  5. Baum M, von Korff M, Guo P, Lakew B, Udupa SM, Sayed H, Choumane W, Grando S, Ceccarelli S (2007) Molecular approaches and breeding strategies for drought tolerance in barley. In: Varshney R, Tuberosa R (eds) Genomic assisted crop improvement: vol 2. Genomics applications in Crops, Springer Netherlands, pp 51–79Google Scholar
  6. Blum A (1996) Crop responses to drought and the interpretation of adaptation. J Plant Growth Regul 20:135–148CrossRefGoogle Scholar
  7. Borràs-Gelonch G, Denti M, Thomas WTB, Romagosa I (2011a) Genetic control of pre-heading phases in the Steptoe × Morex barley population under different conditions of photoperiod and temperature. Euphytica. doi: 10.1007/s10681-011-0526-7 Google Scholar
  8. Borràs-Gelonch G, Rebetzke G, Richards R, Romagosa I (2011b) Genetic control of duration of pre-anthesis phases in wheat (Triticum aestivum L.) and relationships to leaf appearance, tillering and dry matter accumulation. J Exp Bot. doi: 10.1093/jxb/err230v
  9. Campoli C, Drosse B, Searle I, Coupland G, von Korff M (2012a) Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS. Plant J 69:868–880PubMedCrossRefGoogle Scholar
  10. Campoli C, Shtaya M, Davis SJ, von Korff M (2012b) Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs. BMC Plant Biol 12:97PubMedCrossRefGoogle Scholar
  11. Casao MC, Igartua E, Karsai I, Lasa JM, Gracia MP, Casas AM (2011a) Expression analysis of vernalization and day length response genes in barley (Hordeum vulgare L.) indicates that VRNH2 is a repressor of PPDH2 (HvFT3) under long days. J Exp Bot 62:1939–1949PubMedCrossRefGoogle Scholar
  12. Casao MC, Karsai I, Igartua E, Gracia MP, Veisz O, Casas AM (2011b) Adaptation of barley to mild winters: a role for PPDH2. BMC Plant Biol 11:164PubMedCrossRefGoogle Scholar
  13. Casas AM, Djemel A, Ciudad FJ, Yahiaoui S, Ponce LJ, Contreras-Moreira B, Gracia MP, Lasa JM, Igartua E (2011) HvFT1 (VrnH3) drives latitudinal adaptation in Spanish barleys. Theor Appl Genet 112:1293–1304CrossRefGoogle Scholar
  14. Ceccarelli S (1989) Wide adaptation. How wide? Euphytica 40:197–205Google Scholar
  15. Ceccarelli S, Grando S, Hamblin J (1992) Relationship between barley grain yield measured in low- and high yielding environments. Euphytica 64:49–58Google Scholar
  16. Chen A, Baumann U, Fincher GB, Collins NC (2009) Flt-2L, a locus in barley controlling flowering time, spike density, and plant height. Funct Integr Genomics 9(2):243–254PubMedCrossRefGoogle Scholar
  17. Cockram J, Chiapparino E, Taylor SA, Stamati K, Donini P, Laurie DA, O’Sullivan DM (2007) Haplotype analysis of vernalization loci in European barley germplasm reveals novel VRN-H1 alleles and a predominant winter VRN-H1/VRN-H2 multi-locus haplotype. Theor Appl Genet 115:993–1001PubMedCrossRefGoogle Scholar
  18. Comadran J, Russell JR, van Eeuwijk FA, Ceccarelli S, Grando S, Baum M, Stanca AM, Pecchioni N, Mastrangelo AM, Akar T, Al-Yassin A, Benbelkacem A, Choumane W, Ouabbou H, Dahan R, Bort J, Araus J-L, Pswarayi A, Romagosa I, Hackett CA, Thomas WTB (2008) Mapping adaptation of barley to droughted environments. Euphytica 161:35–45CrossRefGoogle Scholar
  19. Comadran J, Russell JR, Booth A, Pswarayi A, Ceccarelli S, Grando S, Stanca AM, Pecchioni N, Akar T, Al-Yassin A (2011) Mixed model association scans of multi-environmental trial data reveal major loci controlling yield and yield related traits in Hordeum vulgare in Mediterranean environments. Theor Appl Genet 122(7):1363–1373PubMedCrossRefGoogle Scholar
  20. Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R (2012) Natural variation in a homolog of Antirrhinum Centroradialis contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392PubMedCrossRefGoogle Scholar
  21. Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033PubMedCrossRefGoogle Scholar
  22. Coventry SJ, Baum M, Sayed H, Grando S, Ceccarelli S, Barr AR, Eglinton JK (2004)The genetic basis of adaptation to low rainfall environments in Australia. In: Proceedings of the 9th international barley genetics symposiumGoogle Scholar
  23. Cseri A, Cserhati M, von Korff M, Nagy B, Horvath GV, Palagyi A, Pauk J, Dudits D, Toerjek O (2011) Allele mining and haplotype discovery in barley candidate genes for drought tolerance. Euphytica 181(3):341–356CrossRefGoogle Scholar
  24. Cuesta-Marcos A, Igartua E, Ciudad FJ, Codesal P, Russell JR, Molina-Cano JL, Moralejo M, Szűcs P, Gracia MP, Lasa JM, Casas AM (2008) Heading date QTL in a spring × winter barley cross evaluated in Mediterranean environments. Mol Breed 21:455–471CrossRefGoogle Scholar
  25. Cuesta-Marcos A, Casas AM, Hayes PM, Gracia MP, Lasa JM, Ciudad F, Codesal P, Molina-Cano JL, Igartua E (2009) Yield QTL affected by heading date in Mediterranean barley. Plant Breed 128:46–53CrossRefGoogle Scholar
  26. Dhillon T, Pearce SP, Stockinger EJ, Distelfeld A, Li C, Knox AK, Vashegyi I, Vágújfalvi A, Galiba G, Dubcovsky J (2010) Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1Connection. Plant Physiol 153(4):1846–1858PubMedCrossRefGoogle Scholar
  27. Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42CrossRefGoogle Scholar
  28. Eglinton JK, Baum M, Grando S, Ceccarelli S, Barr AR (2001) Towards understanding the genetic basis of adaptation to low rainfall environments. In: Proceedings of the 10th Australian Barley Technical SymposiumGoogle Scholar
  29. Faure S, Higgins J, Turner A, Laurie DA (2007) The FLOWERING LOCUS T-like gene family in barley Hordeum vulgare. Genetics 176:599–609PubMedCrossRefGoogle Scholar
  30. Francia E, Tondelli A, Rizza F, Badeck FW, Li Destri Nicosia O, Akar T, Grando S, Al-Yassin A, Benbelkacem A, Thomas WTB, van Eeuwijk F, Romagosa I, Stanca AM, Pecchioni N (2011) Determinants of barley grain yield in a wide range of Mediterranean environments. Field Crops Res 120(1):169–178CrossRefGoogle Scholar
  31. Gepts P (2006) Plant genetic resources conservation and utilization: the accomplishments and future of a societal insurance policy. Crop Sci 46:2278–2292CrossRefGoogle Scholar
  32. Gleeson A (1997) Spatial analysis. In: Kempton RA, Fox PN (eds) Statistical methods for plant variety evaluation. Chapman and Hall, London, pp 68–85CrossRefGoogle Scholar
  33. González FG, Slafer GA, Miralles DJ (2002) Vernalization and photoperiod responses in wheat pre-flowering reproductive phases. Field Crops Res 74(2–3):183–195CrossRefGoogle Scholar
  34. González FG, Miralles DJ, Slafer GA (2011) Wheat floret survival as related to pre-anthesis spike growth. J Exp Bot 62(14):4889–4901PubMedCrossRefGoogle Scholar
  35. Hemming MN, Peacock WJ, Dennis ES, Trevaskis B (2008) Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in Barley. Plant Physiol 147:355–366PubMedCrossRefGoogle Scholar
  36. Hemming MN, Fieg S, Peacock WJ, Dennis ES, Trevaskis B (2009) Regions associated with repression of the barley Hordeum vulgare VERNALIZATION1 gene are not required for cold induction. Mol Genetics Genomics 282:107–117CrossRefGoogle Scholar
  37. Jia Q, Zhang J, Westcott S, Zhang X, Bellgard M, Lance R, Li C (2009) GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genomics 9:255–262PubMedCrossRefGoogle Scholar
  38. Karsai I, Szücs P, Meszaros K, Filichkina T, Hayes PM, Skinner JS, Lang L, Bedo Z (2005) The Vrn-H2 locus is a major determinant of flowering time in a facultative winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet 110:1458–1466PubMedCrossRefGoogle Scholar
  39. Kato K, Miura H, Sawada S (1999) QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. Theor Appl Genet 98:472–477CrossRefGoogle Scholar
  40. Kempton RA, Gleeson A (1997) Unreplicated trials. In: Kempton RA, Fox PN (eds) Statistical methods for plant variety evaluation. Chapman and Hall, London, pp 86–100CrossRefGoogle Scholar
  41. Kikuchi R, Kawahigashi H, Ando T, Tonooka T, Handa H (2009) Molecular and functional characterization of PEBP genes in barley reveal the diversification of their roles in flowering. Plant Physiol 149:1341–1353PubMedCrossRefGoogle Scholar
  42. Korol A, Ronin Y, Minkov D, Britvin E, Mester D, Korostishevsky M, Malkin I, Frenkel Z, Orion O, Cohen L, Brailovsky A (2005) MultiQTL version 2.5. Institute of Evolution, Haifa University, HaifaGoogle Scholar
  43. Lakew B, Henry RJ, Ceccarelli S, Grando S, Eglinton J, Baum M (2012) Genetic analysis and phenotypic associations for drought tolerance in Hordeum spontaneum introgression lines using SSR and SNP markers. Euphytica 189:9–29CrossRefGoogle Scholar
  44. Muller B, Pantin F, Génard M, Turc O, Freixes S, Piques MC, Gibon Y (2011) Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot 62:1715–1729PubMedCrossRefGoogle Scholar
  45. Nitcher R, Distelfeld A, Tan C, Yan L, Dubcovsky J (2013) Increased copy number at the HvFT1 locus is associated with accelerated flowering time in barley. Mol Genet Genomics 288(5–6):261–275PubMedCrossRefGoogle Scholar
  46. Payne RW (ed) (2011) The guide to GenStat® Release 14. Part 2: statistics. VSN International, Hemel Hempstead, UKGoogle Scholar
  47. Pillen K, Zacharias A, Léon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352PubMedCrossRefGoogle Scholar
  48. Pillen K, Zacharias A, Léon J (2004) Comparative AB-QTL analysis in barley using a single exotic donor of Hordeum vulgare ssp. spontaneum. Theor Appl Genet 108:1591–1601PubMedCrossRefGoogle Scholar
  49. Ponce-Molina LJ, Casas AM, Pilar Gracia M, Silvar C, Mansour E, Thomas WBT, Schweizer G, Herz M, Igartua E (2012) QTL and candidate loci for heading date in a large population of a wide barley cross. Crop Sci. doi: 10.2135/cropsci2012.01.0029 Google Scholar
  50. Pswarayi A, van Eeuwijk F, Ceccarelli S, Grando S, Comadran J, Russell JR, Stanca AM, Francia E, Pecchioni N, Akar T, Al-Yassin A, Benbelkacem A, Choumane W, Karrou M, Ouabbou H, Bort J, Araus JL, Molina-Cano JL, Thomas WTB, Romagosa I (2008) Barley adaptation and improvement in the Mediterranean basin. Plant Breed 127:554–560CrossRefGoogle Scholar
  51. Rollins JA, Habte E, Templer SE, Colby T, Schmidt J, von Korff M (2013) Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J Exp Bot. doi: 10.1093/jxb/ert158 PubMedGoogle Scholar
  52. Ryan J, Masri S, Garabet S, Diekmann J, Habib H (1997). Soils of ICARDA’s agricultural experiment stations and sites: climate, classification, physical-chemical properties and land use. ICARDA, Aleppo, Syria. Technical Bulletin: 126Google Scholar
  53. Saisho D, Ishii M, Hori K, Sato K (2011) Natural variation of barley vernalization requirements: implication of quantitative variation of winter growth habit as an adaptive trait in East Asia. Plant Cell Physiol 52:724–727PubMedCrossRefGoogle Scholar
  54. SAS Institute (2009) The SAS system for Windows, release 9.1.3. SAS Institute, Cary, NC, USAGoogle Scholar
  55. Shakhatreh Y, Kafawin O, Ceccarelli S, Saoub H (2001) Selection of barley lines for drought tolerance in low rainfall areas. J Agron Crop Sci 186:119–127CrossRefGoogle Scholar
  56. Simons KJ, Fellers JP, Trick HN, Zhang Z, Tai YS, Gill BS, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555PubMedCrossRefGoogle Scholar
  57. Singh M, Malhotra RS, Ceccarelli S, Sarker A, Grando S, Erskine W (2003) Spatial variability models to improve dryland field trials. Exp Agric 39:151–160CrossRefGoogle Scholar
  58. Skirycz A, Vandenbroucke K, Clauw P, Maleux K, De Meyer B, Dhondt S, Pucci A, Gonzalez N, Hoeberichts F, Tognetti VB, Galbiati M, Tonelli C, Van Breusegem F, Vuylsteke M, Inzé D (2011) Survival and growth of Arabidopsis plants given limited water are not equal. Nat Biotechnol 29:212–214PubMedCrossRefGoogle Scholar
  59. Stockinger EJ, Skinner JS, Gardner KG, Francia E, Pecchioni N (2007) Expression levels of barley Cbf genes at the Frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2. Plant J 51(2):308–321PubMedCrossRefGoogle Scholar
  60. Talamé V, Sanguineti MC, Chiapparino E, Bahri H, Ben Salem M, Forster BP, Ellis RP, Rhouma S, Zoumarou W, Waugh R, Tuberosa R (2004) Identification of Hordeum spontaneum QTL alleles improving field performance of barley grown under rainfed conditions. Ann Appl Biol 144(3):309–319CrossRefGoogle Scholar
  61. Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036PubMedCrossRefGoogle Scholar
  62. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822PubMedCrossRefGoogle Scholar
  63. Teulat B, Merah O, Souyris I, This D (2001) QTLs for agronomic traits from a Mediterranean barley progeny grown under several environments. Theor Appl Genet 103:774–787CrossRefGoogle Scholar
  64. Tisné S, Schmalenbach I, Reymond M, Dauzat M, Pervent M, Vile D, Granier C (2010) Keep on growing under drought: genetic and developmental bases of the response of rosette area using a recombinant inbred line population. Plant Cell Environ 33:1875–1887PubMedCrossRefGoogle Scholar
  65. Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034PubMedCrossRefGoogle Scholar
  66. Van Ooijen JW, Vorrips RE (2001) JoinMap 4, Software for the Calculation of Genetic Linkage Maps. Plant Research International, Wageningen, the NetherlandsGoogle Scholar
  67. Voltas J, van Eeuwijk F, Igartua E, Garcia del Moral LF, Molina Cano JL, Romagosa I (2002) Genotype by environment interaction and adaptation in barley breeding: basic concepts and methods of analysis. Slafer et al (eds) Barley science. Recent advances from molecular biology to agronomy of yield and quality. Food Product Press, Binghamton, NY, pp 205–242Google Scholar
  68. von Korff M, Wang H, Léon J, Pillen K (2006) AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 112(7):1221–1231CrossRefGoogle Scholar
  69. von Korff M, Grando S, This D, Baum M, Ceccarelli S (2008) Quantitative trait loci (QTL) associated with agronomic performance of barley under drought. Theor Appl Genet 117:653–669CrossRefGoogle Scholar
  70. von Korff M, Léon J, Pillen K (2010) Detection of epistatic interactions between exotic alleles introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 121(8):1455–1464CrossRefGoogle Scholar
  71. Weltzien E (1988) Evaluation of barley (Hordeum vulgare L) landrace populations originating from different growing regions in the Near East. Plant Breed 101:95–106CrossRefGoogle Scholar
  72. Weltzien E (1989) Differentiation among barley landrace populations from the Near East. Euphytica 43:29–39CrossRefGoogle Scholar
  73. Windhausen VS, Wagener S, Magorokosho C, Makumbi D, Vivek B, Piepho H-P, Melchinger AE, Atlin GN (2012) Strategies to subdivide a target population of environments: results from the CIMMYT-led maize hybrid testing programs in Africa. Crop Sci 52:2143–2152CrossRefGoogle Scholar
  74. Yan W, Hunt LA, Sheng Q, Szlavnics Z (2000) Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci 40(3):597–605CrossRefGoogle Scholar
  75. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Ac Sci USA 100:6263–6268CrossRefGoogle Scholar
  76. Yan L, Loukoianov A, Blech A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644PubMedCrossRefGoogle Scholar
  77. Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. PNAS 103:19581–19586PubMedCrossRefGoogle Scholar
  78. Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jarod A. Rollins
    • 1
  • B. Drosse
    • 1
  • M. A. Mulki
    • 1
    • 3
  • S. Grando
    • 3
    • 4
  • M. Baum
    • 3
  • M. Singh
    • 3
  • S. Ceccarelli
    • 3
    • 4
  • M. von Korff
    • 1
    • 2
    Email author
  1. 1.Max Planck Institute for Plant Breeding ResearchCologneGermany
  2. 2.Institute of Plant GeneticsHeinrich-Heine-UniversityDüsseldorfGermany
  3. 3.The International Center for Agricultural Research in the Dry Areas (ICARDA)AleppoSyria
  4. 4.ICRISATPatancheruIndia

Personalised recommendations