QTL mapping and confirmation for tolerance of anaerobic conditions during germination derived from the rice landrace Ma-Zhan Red

Abstract

Wide adoption of direct-seeded rice practices has been hindered by poorly leveled fields, heavy rainfall and poor drainage, which cause accumulation of water in the fields shortly after sowing, leading to poor crop establishment. This is due to the inability of most rice varieties to germinate and reach the water surface under complete submergence. Hence, tolerance of anaerobic conditions during germination is an essential trait for direct-seeded rice cultivation in both rainfed and irrigated ecosystems. A QTL study was conducted to unravel the genetic basis of tolerance of anaerobic conditions during germination using a population derived from a cross between IR42, a susceptible variety, and Ma-Zhan Red, a tolerant landrace from China. Phenotypic data was collected based on the survival rates of the seedlings at 21 days after sowing of dry seeds under 10 cm of water. QTL analysis of the mapping population consisting of 175 F2:3 families genotyped with 118 SSR markers identified six significant QTLs on chromosomes 2, 5, 6, and 7, and in all cases the tolerant alleles were contributed by Ma-Zhan Red. The largest QTL on chromosome 7, having a LOD score of 14.5 and an R 2 of 31.7 %, was confirmed using a BC2F3 population. The QTLs detected in this study provide promising targets for further genetic characterization and for use in marker-assisted selection to rapidly develop varieties with improved tolerance to anaerobic condition during germination. Ultimately, this trait can be combined with other abiotic stress tolerance QTLs to provide resilient varieties for direct-seeded systems.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3

References

  1. Angaji SA, Septiningsih EM, Mackill DJ, Ismail AM (2010) QTLs associated with tolerance of flooding during germination in rice (Oryza sativa L.). Euphytica 172:159–168

    Article  Google Scholar 

  2. Bailey-Serres J, Chang R (2005) Sensing and signaling in response to oxygen deprivation in plants and other organisms. Ann Bot 96:507–518

    PubMed  Article  CAS  Google Scholar 

  3. Biswas JK, Yamauchi M (1997) Mechanism of seedling establishment of direct-seeded rice (Oryza sativa L.) under lowland conditions. Bot Bull Acad Sin 38:29–32

    Google Scholar 

  4. Cai HW, Morishima H (2002) QTL clusters reflect character associations in wild and cultivated rice. Theor Appl Genet 100:840–846

    Article  Google Scholar 

  5. Chang TT (1991) Findings from a 28-year seed viability experiment. Int Rice Res Newsl 16:5–6

    Google Scholar 

  6. Chauhan BS (2012) Weed ecology and weed management strategies for dry-seeded rice in Asia. Weed Technol 26:1–13

    Article  Google Scholar 

  7. Dong Y, Kamiuten H, Yang Z, Lin D, Ogawa T, Luo L, Matsuo H (2006) Mapping of quantitative trait loci for gibberelic acid response at rice (Oryza sativa L.) seedling stage. Plant Sci 170:12–17

    Article  CAS  Google Scholar 

  8. Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia Ann Rev Plant Physiol. Mol Biol 48:223–250

    CAS  Google Scholar 

  9. Ella ES, Dionisio-Sese ML, Ismail AM (2010) Proper management improves seedling survival and growth during early flooding in contrasting rice genotypes. Crop Sci 50:1997–2008

    Article  Google Scholar 

  10. Ella ES, Dionisio-Sese ML, Ismail AM (2011) Seed pretreatment in rice reduces damage, enhances carbohydrate mobilization and improves emergence and seedling establishment under flooded conditions. AoB-PLANTS 2011 plr007 doi:10.1093/aobpla/plr007

  11. Ellis RHT, Hong TD, Roberts EH (1992) The low moisture-content limit to the negative logarithmic relation between seed longevity and moisture content in three subspecies of rice. Ann Bot 69:53–58

    Google Scholar 

  12. Gu X-Y, Kianian SF, Foley ME (2004) Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa). Genetics 166:1503–1516

    PubMed  Article  CAS  Google Scholar 

  13. Gu X-Y, Kianian SF, Hareland GA, Hoffer BL, Foley ME (2005) Genetic analysis of adaptive syndromes interrelated with seed dormancy in weedy rice (Oryza sativa). Theor Appl Genet 110:1108–1118

    PubMed  Article  CAS  Google Scholar 

  14. Gu X-Y, Liu T, Feng J, Suttle JC, Gibbons J (2010) The qSD12 underlying gene promotes abscisic acid accumulation in early developing seeds to induce primary dormancy in rice. Plant Mol Biol 73:97–104

    PubMed  Article  CAS  Google Scholar 

  15. Han L, Qiao Y, Zhang S, Zhang Y, Cao G, Kim J, Lee K, Koh H (2007) Identification of quantitative trait loci for cold response of seedling vigor traits in rice. J Genet Genomics 34:239–246

    PubMed  Article  CAS  Google Scholar 

  16. Hoffmann-Benning S, Kende H (1992) On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol 99:1156–1161

    PubMed  Article  CAS  Google Scholar 

  17. Horton RF (1991) The effect of ethylene and other regulators on coleoptile growth of rice under anoxia. Plant Sci 79:57–62

    Article  CAS  Google Scholar 

  18. Hwang YS, Thomas BR, Rodriguez RL (1999) Differential expression of rice α-amylase genes during seedling development under anoxia. Plant Mol Bio 40:911–920

    Article  CAS  Google Scholar 

  19. Ikehashi H (1973) Studies on the environmental and varietal differences of germination habits in rice seeds with special reference to plant breeding (in Japanese with English summary). Kordan 744J Cent Agric Exp Stan 19:1–60

    Google Scholar 

  20. Ismail AM, Ella ES, Vergara GV, Mackill DJ (2009) Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa). Ann Bot 103:197–209

    PubMed  Article  CAS  Google Scholar 

  21. Ismail AM, Johnson DE, Ella ES, Vergara GV, Baltazar AM (2012) Adaptation to flooding during emergence and seedling growth in rice and weeds, and implications for crop establishment. AoB-PLANTS 2012: pls019 doi:10.1093/aobpla/pls019

  22. Iwata N, Shinada H, Kiuchi H, Sato T, Fujino K (2010) Mapping of QTLs controlling seedling establishment using a direct seeding method in rice. Breed Sci 60:353–360

    Article  Google Scholar 

  23. Jiang L, Hou M, Wang C, Wan J (2004) Quantitative trait loci and epistatic analysis of seed anoxia germinability in rice (Oryza sativa L.). Rice Sci 11:238–244

    Google Scholar 

  24. Jiang L, Liu S, Hou M, Tang J, Chen L, Zhai H, Wan J (2006) Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). Field Crops Res 98:68–75

    Article  Google Scholar 

  25. Konchan S, Kono Y (1996) Spread of direct seeded lowland rice in Northeast Thailand: farmers’ adaptation to economic growth. Southeast Asian Stud 33:523–546

    Google Scholar 

  26. Kordan HA (1974) Patterns of shoot and root growth in rice seedlings germinating under water. J Appl Ecol 11:685–690

    Article  Google Scholar 

  27. Lin SY, Sasaki T, Yano M (1998) Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor Appl Genet 96:997–1003

    Article  CAS  Google Scholar 

  28. Loreti E, Yamaguchi J, Alpi A, Perata P (2003) Sugar modulation of α-amylase genes under anoxia. Ann Bot 91:143–148

    PubMed  Article  CAS  Google Scholar 

  29. Lu X-L, Niu A-L, Cai H-Y, Zhao Y, Liu J-W, Zhu Y-G, Zhang Z-H (2007) Genetics dissection of seedling and early vigor in a recombinant inbred line population of rice. Plant Sci 172:212–220

    Article  CAS  Google Scholar 

  30. Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    PubMed  Article  CAS  Google Scholar 

  31. Matsumura H, Takano T, Takeda G, Uchimiya H (1998) Adh1 is transcriptionally active but its translational product is reduced in a rad mutant of rice (Oryza sativa L.), which is vulnerable to submergence stress. Theor Appl Genet 97:1197–1203

    Article  CAS  Google Scholar 

  32. McCouch SR (2008) Gene nomenclature system for rice. Rice 1:72–84

    Article  Google Scholar 

  33. McCouch SR, Sweeney M, Li J, Jiang H, Thomson M, Septiningsih E, Edwards J, Moncada P, Xiao J, Garris A, Tai T, Martinez C, Tohme J, Sugiono M, McClung A, Yuan LP, Ahn SN (2007) Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa. Euphytica 154:317–339

    Article  CAS  Google Scholar 

  34. McDonald MB (1999) Seed deterioration: physiology, repair and assessment. Seed Sci Technol 27:177–237

    Google Scholar 

  35. Miura K, Lin SY, Yano M, Nagamine T (2002) Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theor Appl Genet 104:981–986

    PubMed  Article  CAS  Google Scholar 

  36. Nelson JC (1997) QGene software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    Article  CAS  Google Scholar 

  37. Pandey S, Velasco L (2002) Economics of direct seeding in Asia: patterns of adoption and research priorities. In: Pandey S, Mortimer M, Wade L, Lopez K, Hardy B (eds) Direct seeding: research strategies and opportunities, pp 3-8

  38. Perata P, Guglielminetti L, Alpi A (1997) Mobilization of endosperm reserves in cereal seeds under anoxia. Ann Bot 79:49–56

    Article  CAS  Google Scholar 

  39. Ram PC, Singh BB, Singh AK, Ram P, Singh PN, Singh HP, Boamfa I, Harren F, Reuss J, Jackson MB, Settler TL, Wade LJ, Singh VP (2002) Physiological basis of submergence tolerance in rainfed lowland rice: prospects of germplasm improvement through marker aided breeding. Field Crops Res 76:131–152

    Article  Google Scholar 

  40. Ricard B, Mocquot B, Fournier A, Delseny M, Pradet A (1986) Expression of alcohol dehydrogenase in rice embryos under anoxia. Plant Mo1 Biol 7:321–329

    Article  CAS  Google Scholar 

  41. Saika H, Matsumura H, Takano T, Tsutsumi N, Nakazono M (2006) A point mutation of Adh1 gene is involved in the repression of coleoptiles elongation under submergence in rice. Breed Sci 56:69–74

    Article  CAS  Google Scholar 

  42. Sasahara T, Ikarashi H, Kambayashi M (1986) Genetic variations in embryo and endosperm weights, seedling growth parameters and α-amylase activity of the germinated grains in rice (Oryza sativa L.). Jpn J Breed 36:248–261

    CAS  Google Scholar 

  43. Sasaki K, Fukuta Y, Sato T (2005) Mapping of quantitative trait loci controlling seed longevity of rice (Oryza sativa L.) after various periods of seed storage. Pl Breed 124:361–366

    Article  Google Scholar 

  44. Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1419–1432

    PubMed  Article  CAS  Google Scholar 

  45. Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, Ismail AM, Mackill DJ (2009) Development of Submergence Tolerant Rice Cultivars: the Sub1 Locus and Beyond. Annals Bot 103:151–160

    Article  CAS  Google Scholar 

  46. Septiningsih EM, Collard BCY, Heuer S, Bailey-Serres J, Ismail AM, Mackill DJ (2012a) Applying genomics tools for breeding submergence tolerance in rice. In: Varshney RK, Tuberosa R (eds) Genomics applications in plant breeding: Improvement for abiotic stresses. Wiley-Blackwell, USA, In press

  47. Septiningsih EM, Sanchez DL, Singh N, Sendon PMD, Pamplona AM, Heuer S, Mackill DJ (2012b) Identifying novel QTLs for submergence tolerance in rice cultivars IR72 and Madabaru. Theor Appl Genet 124:867–874

    PubMed  Article  Google Scholar 

  48. Shingaki-Wells RN, Huang S, Taylor NL, Carroll AJ, Zhou W, Millar AH (2011) Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance. Plant Physiol 156:1706–1724

    PubMed  Article  CAS  Google Scholar 

  49. Siddique SB, Seshu DV, Pardee WD (1988) Rice cultivar variability for accelerated aging of seed. In: IRRI research paper series 131, International Rice Research Institute, Manila, Philippines, p 1-7

  50. Thomson MJ, Tai TH, McClung AM, Hinga ME, Lobos KB, Xu Y, Martinez C, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components, and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493

    PubMed  Article  CAS  Google Scholar 

  51. Thomson MJ, Edwards JD, Septiningsih EM, Harrington SE, McCouch SR (2006) Substitution mapping of dth1.1, a flowering time quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple sub-QTL. Genetics 172:2501–2514

    PubMed  Article  CAS  Google Scholar 

  52. Tuong TP, Pablico PP, Yamauchi M, Confensor R, Moody K (2000) Increasing water productivity and weed suppression of wet-seeded rice: effect of water management and rice genotypes. Exp Agric 36:71–89

    Article  Google Scholar 

  53. Wang S, Basten CJ, and Zeng Z-B (2010) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  54. Williams JF, Peterson ML (1973) Relation between alpha-amylase activity and growth of rice seedlings. Crop Sci 13:612–614

    Article  CAS  Google Scholar 

  55. Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    PubMed  Article  CAS  Google Scholar 

  56. Yamauchi M, Winn T (1996) Rice seed vigor and seedling establishment in anaerobic soil. Crop Sci 36:680–686

    Article  Google Scholar 

  57. Yamauchi M, Aguilar AM, Vaughan DA, Seshu DV (1993) Rice (Oryza sativa L.) germplasm suitable for direct sowing under soil surface. Euphytica 67:177–184

    Article  Google Scholar 

  58. Yang J, Zhu J (2005) Methods for predicting superior genotypes under multiple environments based on QTL effects. Theor Appl Genet 110:1268–1274

    PubMed  Article  Google Scholar 

  59. Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527–1536

    PubMed  Article  CAS  Google Scholar 

  60. Yang J, Hu CC, Hu H, Yu RD, Xia Z, Ye XZ, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723

    PubMed  Article  Google Scholar 

  61. Zhang Z-H, Qu X-S, Wan S, Chen L-H, Zhu Y-G (2005a) Comparison of QTL controlling seedling vigor under different temperature conditions using recombinant inbred lines in Rice (Oryza sativa). Ann Bot 95:423–429

    PubMed  Article  CAS  Google Scholar 

  62. Zhang Z-H, Yu S-B, Yu T, Huang Z, Zhu Y-G (2005b) Mapping quantitative trait loci (QTLs) for seedling vigor using recombinant inbred lines of rice (Oryza sativa). Field Crop Res 91:161–170

    Article  Google Scholar 

  63. Zheng K, Subudhi PK, Domingo J, Magpantay G, Huang N (1995) Rapid DNA isolation for marker assisted selection in rice breeding. Rice Genet Newsl 12:255–258

    Google Scholar 

Download references

Acknowledgments

The technical assistance of R. Garcia, J. Mendoza., E. Suiton, and A. M. Pamplona is gratefully acknowledged. The work reported here was supported in part by a grant from the Bill and Melinda Gates Foundation (BMGF) through the project “Stress-Tolerant Rice for Africa and South Asia (STRASA)”, by the German Federal Ministry for Economic Cooperation and Development (BMZ), and by the Global Rice Science Partnership (GRiSP).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Endang M. Septiningsih.

Additional information

Communicated by Y. Xu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Septiningsih, E.M., Ignacio, J.C.I., Sendon, P.M.D. et al. QTL mapping and confirmation for tolerance of anaerobic conditions during germination derived from the rice landrace Ma-Zhan Red. Theor Appl Genet 126, 1357–1366 (2013). https://doi.org/10.1007/s00122-013-2057-1

Download citation

Keywords

  • Interval Mapping
  • Composite Interval Mapping
  • BC2F3 Family
  • IR42 Allele
  • Tolerant Allele