Skip to main content
Log in

An EST-derived SNP and SSR genetic linkage map of cassava (Manihot esculenta Crantz)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Cassava (Manihot esculenta Crantz) is one of the most important food security crops in the tropics and increasingly being adopted for agro-industrial processing. Genetic improvement of cassava can be enhanced through marker-assisted breeding. For this, appropriate genomic tools are required to dissect the genetic architecture of economically important traits. Here, a genome-wide SNP-based genetic map of cassava anchored in SSRs is presented. An outbreeder full-sib (F1) family was genotyped on two independent SNP assay platforms: an array of 1,536 SNPs on Illumina’s GoldenGate platform was used to genotype a first batch of 60 F1. Of the 1,358 successfully converted SNPs, 600 which were polymorphic in at least one of the parents and was subsequently converted to KBiosciences’ KASPar assay platform for genotyping 70 additional F1. High-precision genotyping of 163 informative SSRs using capillary electrophoresis was also carried out. Linkage analysis resulted in a final linkage map of 1,837 centi-Morgans (cM) containing 568 markers (434 SNPs and 134 SSRs) distributed across 19 linkage groups. The average distance between adjacent markers was 3.4 cM. About 94.2% of the mapped SNPs and SSRs have also been localized on scaffolds of version 4.1 assembly of the cassava draft genome sequence. This more saturated genetic linkage map of cassava that combines SSR and SNP markers should find several applications in the improvement of cassava including aligning scaffolds of the cassava genome sequence, genetic analyses of important agro-morphological traits, studying the linkage disequilibrium landscape and comparative genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn S, Tanksley SD (1993) Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA 90:7980–7984

    Article  PubMed  CAS  Google Scholar 

  • Akano AO, Dixon AGO, Mba C, Barrera E, Fregene M (2002) Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theor Appl Genet 105:521–525

    Article  PubMed  CAS  Google Scholar 

  • Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet 119:507–517

    Article  PubMed  CAS  Google Scholar 

  • Alves AAA (2002) Cassava botany and physiology. In: Hillocks RJ, Thresh MJ, Bellotti AC (eds) Cassava: biology, production and utilisation. CABI International, Oxford, pp 67–89

    Chapter  Google Scholar 

  • Anithakumari AM, Tang J, van Eck HJ, Visser RGF, Leunissen JAM, Vosman B, van der Linden CG (2010) A pipeline for high throughput detection and mapping of SNPs from EST databases. Mol Breed 26:65–75

    Article  PubMed  CAS  Google Scholar 

  • Appleby N, Edwards D, Batley J (2009) New technologies for ultra-high throughput genotyping in plants. Methods Mol Biol 513:19–39

    Article  PubMed  CAS  Google Scholar 

  • Bechsgaard J, Bataillon T, Schierup Mh (2004) Uneven segregation of sporophytic self-incompatibility alleles in Arabidopsis lyrata. J Evol Biol 17:554–561

    Article  PubMed  CAS  Google Scholar 

  • Boonchanawiwat A, Sraphet S, Boonseng O, Lightfoot DA, Triwitayakorn K (2011) QTL underlying plant and first branch height in cassava (Manihot esculenta Crantz). Field Crops Res 121:343–349

    Article  Google Scholar 

  • Buckler ES, Thornsberry JM (2002) Plant molecular diversity and application to genomics. Curr Opin Plant Biol 5:107–111

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Xia Z, Fu Y, Lu C, Wang W (2010) Constructing a genetic linkage map using an F1 population of non-inbred parents in cassava (Manihot esculenta Crantz). Plant Mol Biol Report 28:676–683

    Article  CAS  Google Scholar 

  • CIAT (2003) Annual Report IP3. Improved cassava for the developing world. International Centre for Tropical Agriculture (CIAT), pp 8–90, Cali

  • Dellaporta SL, Wood J, Hicks JR (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Edwards D, Forster JW, Cogan NOI, Batley J, Chagne’ D (2010) Single nucleotide polymorphism discovery. In: Oraguzie NC, Rikkerink EHA, Gardiner SE, De Silva HN (eds) Association mapping in plants. Springer, New York, pp 53–76

    Google Scholar 

  • Elshire R, Glaubitz J, Sun Q, Poland J, Kawamoto K et al (2011) A robust simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. doi:10.1371/journal.pone.0019379

    Article  PubMed  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Fan JB, Oliphant A, Shen R et al (2003) Highly parallel SNP genotyping. Cold Spring Harb Symp Quant Biol 68:69–78

    Article  PubMed  CAS  Google Scholar 

  • FAOSTAT (2010) Food and agriculture organizations statistics database. FAO, Rome. http://faostat.fao.org/. Accessed Oct 2010

  • Ferguson ME, Hearne SJ, Close TJ, Wanamaker S, Moskal WA, Town CD, de Young J, Marri PR, Rabbi IY, de Villiers EP (2011) Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava. Theor Appl Genetics. doi:10.1007/s00122-011-1739-9

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  PubMed  CAS  Google Scholar 

  • Fregene M, Angel F, Gomez R, Rodriguez F, Chavarriaga P, Roca W, Tohme J, Bonierbale M (1997) A molecular genetic map of cassava (Manihot esculenta Crantz). Theor Appl Genet 95:431–441

    Article  CAS  Google Scholar 

  • Gunderson KL, Steemers FJ, Lee G, Mendoza LG, Chee MS (2005) A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet 37:549–554

    Article  PubMed  CAS  Google Scholar 

  • Hackett CA, Wachira FN, Paul S, Powell W, Waugh R (2000) Construction of a genetic linkage map for Camellia sinensis (tea). Heredity 85:346–355

    Article  PubMed  CAS  Google Scholar 

  • Hippolyte I, Bakry F, Seguin M, Gardes L, Rivallan R, Risterucci AM et al (2010) A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas. BMC Plant Biol 10:65

    Article  PubMed  Google Scholar 

  • Hwang TY, Sayama T, Takahashi M et al (2009) High-density integrated linkage map based on SSR markers in soybean. DNA Res 16:213–225

    Article  PubMed  CAS  Google Scholar 

  • Jansson C, Westerbergh A, Zhang J, Hud X, Sun C (2009) Cassava, a potential biofuel crop in (the) People’s Republic of China. Appl Energy 86:95–99

    Article  Google Scholar 

  • Jorge V, Fregene MA, Duque MC, Bonierbale MW, Tohme J, Verdier V (2000) Genetic mapping of resistance to bacterial blight disease in cassava (Manihot esculenta Crantz). Theor Appl Genet 101:865–872

    Article  CAS  Google Scholar 

  • Kanju E, Mkamilo G, Mgoo V, Ferguson M (2010) Statistical evidence linking the zigzag stem habit with tolerance to cassava brown streak disease. ROOTS 12:4–6

    Google Scholar 

  • Kizito BE, Ronnberg-Wastljung AC, Egwang T, Gullberg U, Fregene M, Westerbergh A (2007) Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots. Hereditas 144:129–136

    Article  Google Scholar 

  • Kunkeaw S, Tangphatsornruang S, Smith DR, Triwitayakorn K (2010) Genetic linkage map of cassava (Manihot esculenta Crantz) based on AFLP and SSR markers. Plant Breed. doi:10.1111/j.1439-0523.2009.01623.x

  • Kunkeaw S, Yoocha T, Sraphet S, Boonchanawiwat A, Boonseng O, Lightfoot DA, Triwitayakorn K, Tangphatsornruang S (2011) Construction of a genetic linkage map using simple sequence repeat markers from expressed sequence tags for cassava (Manihot esculenta Crantz). Mol Breed 27:67–75

    Article  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Leppälä J, Bechsgaard JS, Schierup MH, Savolainen O (2008) Transmission ratio distortion in Arabidopsis lyrata: effects of population divergence and the S-locus. Heredity 100:71–78

    Article  PubMed  Google Scholar 

  • Lopez CE, Quesada-Ocampo LM, Bohorquez A, Duque MC, Vargas J, Tohme J, Verdier V (2007) Mapping EST-derived SSRs and ESTs involved in resistance to bacterial blight in Manihot esculenta. Genome 50:1078–1088

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105:622–628

    Article  PubMed  CAS  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  • Okogbenin E, Fregene M (2003) Genetic mapping of QTLs affecting productivity and plant architecture in a full-sib cross from non-inbred parents in cassava (Manihot esculenta Crantz). Theor Appl Genet 107:1452–1462

    Article  PubMed  CAS  Google Scholar 

  • Okogbenin E, Marin J, Fregene M (2006) An SSR-based molecular genetic map of cassava. Euphytica 147:433–440

    Article  CAS  Google Scholar 

  • Okogbenin E, Marin J, Fregene M (2008) QTL analysis for early yield in a pseudo F2 population of cassava. Afr J Biotechnol 7:131–138

    CAS  Google Scholar 

  • Pasquet RS, Peltier A, Hufford MB, Oudin E, Saulnier J, Paul L, Knudsen JT, Herren HR, Gepts P (2008) Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. PNAS 105:13456–13461

    Article  PubMed  CAS  Google Scholar 

  • Pereira MG, Lee M, Bramel-Cox P, Woodman W, Doebley J, Whitkus R (1994) Construction of an RFLP map in sorghum and comparative mapping in maize. Genome 37:236–243

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, Rodriguez F, Fauquet C, Tohme J, Harkins T, Rokhsar DS, Rounsley S (2011) The cassava genome: current progress, future directions. Tropical Plant Biol. doi:10.1007/s12042-011-9088-z

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  PubMed  CAS  Google Scholar 

  • Rojas MC, Pérez JC, Ceballos H, Baena D, Morante N, Calle F (2009) Analysis of inbreeding depression in eight S1 cassava families. Crop Sci 49:543–548

    Article  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:234

    Article  Google Scholar 

  • Shen R, Fan J-B, Campbell D, Chang W, Chen J, Doucet D, Yeakley J, Bibikova M, Wickham Garcia E, McBride C, Steemers F, Garcia F, Kermani BG, Gunderson K, Oliphant A (2005) High-throughput SNP genotyping on universal bead arrays. Mutat Res 573:70–82

    Article  PubMed  CAS  Google Scholar 

  • Sraphet S, Boonchanawiwat A, Thanyasiriwat T, Boonseng O, Tabata S, Sasamoto S, Shirasawa K, Isobe S, Lightfoot DA, Tangphatsornruang S, Triwitayakorn K (2011) SSR and EST-SSR-based genetic linkage map of cassava (Manihot esculenta Crantz). Theor Appl Genet 122:1161–1170

    Article  PubMed  Google Scholar 

  • Swanson-Wagner RA, Eichtenn SR, Kumari S, Tiffin P, Stein JC, Ware D, Springer NM (2010) Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res. doi:10.1101/gr.109165.110

  • Syvänen AC (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2:930–942

    Article  PubMed  Google Scholar 

  • Syvänen AC (2005) Toward genome-wide SNP genotyping. Nat Genet 37:5–10

    Article  Google Scholar 

  • Tavassolian I, Rabie G, Gregory D, Mnejja M, Wirthensohn MG, Hunt PW, Gibson JB, Ford CM, Sedgley M, Wu S (2010) Construction of an almond linkage map in an Australian population Nonpareil × Lauranne. BMC Genomics 11:551

    Article  PubMed  Google Scholar 

  • Thresh JM (2006) Control of tropical plant virus diseases. Adv Virus Res 67:245–295

    Article  PubMed  CAS  Google Scholar 

  • Ubi BE, Fujimori M, Mano Y, Komatsu T (2004) A genetic linkage map of rhodesgrass based on an F1 pseudo-testcross population. Plant Breed 123:247–253

    Article  CAS  Google Scholar 

  • Van Ooijen JW (2006) JoinMap4. Software for the calculation of genetic linkage maps in experimental populations Kyazma BV, Wageningen

  • Van Ooijen JW, Voorrips RE (2001) JoinMap® version 3.0: software for the calculation of genetic linkage maps. Plant Research International, Wageningen

  • Whankaew S, Poopear S, Kanjanawattanawong S, Tangphatsornruang S, Boonseng O, Lightfoot DA, Triwitayakorn K (2011) A genome scan for quantitative trait loci affecting cyanogenic potential of cassava root in an outbred population. BMC Genomics 12:266

    Article  PubMed  Google Scholar 

  • Wydra K, Zinsou V, Jorge V, Verdier V (2004) Identification of pathotypes of Xanthomonas axonopodis pv. manihotis in Africa and detection of quantitative trait loci and markers for resistance to bacterial blight of cassava. Phytopathology 94:1084–1093

    Google Scholar 

  • Xian-Liang S, Xue-Zhen S, Tian-Zhen S (2006) Segregation distortion and its effect on genetic mapping in plants. Chin J Agric Biotechnol 3:163–169

    Article  Google Scholar 

  • Xu Y, Zhu L, Xiao J, Huang N, McCouch SR (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, double haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet 253:535–545

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support from the BioSciences eastern and central Africa Network (BecANet), the Generation Challenge Program (GCP) and the International Institute of Tropical Agriculture (IITA). We would like to thank Jim Lorenzen of IITA and Steve Rounsley (University of Arizona and Dow AgroSciences) for the fruitful discussions that led to the improvement of the manuscript. We sincerely thank the two anonymous reviewers and the associated editor for their useful comments that has also led to further improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Yusuf Rabbi.

Additional information

Communicated by A. Bervillé.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2012_1836_MOESM1_ESM.pdf

Online Resource 1 Comparison of order of markers of the present one-step map and the SSR-based map of Whankaew et al. (2011) shows clear co-linearity in the two linkage maps (PDF 106 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabbi, I.Y., Kulembeka, H.P., Masumba, E. et al. An EST-derived SNP and SSR genetic linkage map of cassava (Manihot esculenta Crantz). Theor Appl Genet 125, 329–342 (2012). https://doi.org/10.1007/s00122-012-1836-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1836-4

Keywords

Navigation