Skip to main content

Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions

Abstract

In southern Australia, where the climate is predominantly Mediterranean, achieving the correct flowering time in bread wheat minimizes the impact of in-season cyclical and terminal drought. Flag leaf glaucousness has been hypothesized as an important component of drought tolerance but its value and genetic basis in locally adapted germplasm is unknown. From a cross between Kukri and RAC875, a doubled-haploid (DH) population was developed. A genetic linkage map consisting of 456 DArT and SSR markers was used to detect QTL affecting time to ear emergence and Zadoks growth score in seven field experiments. While ear emergence time was similar between the parents, there was significant transgressive segregation in the population. This was the result of segregation for the previously characterized Ppd-D1a and Ppd-B1 photoperiod responsive alleles. QTL of smaller effect were also detected on chromosomes 1A, 4A, 4B, 5A, 5B, 7A and 7B. A novel QTL for flag leaf glaucousness of large, repeatable effect was detected in six field experiments, on chromosome 3A (QW.aww-3A) and accounted for up to 52 percent of genetic variance for this trait. QW.aww-3A was validated under glasshouse conditions in a recombinant inbred line population from the same cross. The genetic basis of time to ear emergence in this population will aid breeders’ understanding of phenological adaptation to the local environment. Novel loci identified for flag leaf glaucousness and the wide phenotypic variation within the DH population offers considerable scope to investigate the impact and value of this trait for bread wheat production in southern Australia.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang SY, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    PubMed  Article  CAS  Google Scholar 

  2. Beales J, Turner A, Griffiths S, Snape JW, Laurie DA (2007) A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733

    PubMed  Article  CAS  Google Scholar 

  3. Bonnin I, Rousset M, Madur D, Sourdille P, Dupuits L, Brunel D, Goldringer I (2008) FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theor Appl Genet 116:383–394

    PubMed  Article  CAS  Google Scholar 

  4. Borner A, Schumann E, Furste A, Coster H, Leithold B, Roder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    PubMed  Article  Google Scholar 

  5. Bullrich L, Appendino ML, Tranquilli G, Lewis S, Dubcovsky J (2002) Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1A(m). Theor Appl Genet 105:585–593

    PubMed  Article  CAS  Google Scholar 

  6. Chen YH, Carver BF, Wang SW, Cao SH, Yan LL (2010) Genetic regulation of developmental phases in winter wheat. Mol Breed 26:573–582

    Article  Google Scholar 

  7. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative triat mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  8. Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W, Laurie DA, Greenland AJ (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58:1231–1244

    PubMed  Article  CAS  Google Scholar 

  9. Driscoll CJ (1966) Gene-centromere distances in wheat by aneuploid F2 observations. Genetics 54:131–135

    PubMed  CAS  Google Scholar 

  10. Dubcovsky J, Loukoianov A, Fu DL, Valarik M, Sanchez A, Yan LL (2006) Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol Biol 60:469–480

    PubMed  Article  CAS  Google Scholar 

  11. Eagles HA, Cane K, Vallance N (2009) The flow of alleles of important photoperiod and vernalisation genes through Australian wheat. Crop Pasture Sci 60:646–657

    Article  CAS  Google Scholar 

  12. Febrero A, Fernandez S, Molina-Cano JL, Araus JL (1998) Yield, carbon isotope discrimination, canopy reflectance and cuticular conductance of barley isolines of differing glaucousness. J Exp Bot 49:1575–1581

    Article  CAS  Google Scholar 

  13. Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:3211–3222

    PubMed  Article  CAS  Google Scholar 

  14. Fu DL, Szucs P, Yan LL, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genom 273:54–65

    Article  CAS  Google Scholar 

  15. Gilmour AR, Cullis BR, Verbyla AP (1997) Accounting for natural and extraneaus variation in the analysis of field experiments. J Agric Biolog Environ Stat 2:269–293

    Article  Google Scholar 

  16. Gonzalez A, Ayerbe L (2010) Effect of terminal water stress on leaf epicuticular wax load, residual transpiration and grain yield in barley. Euphytica 172:341–349

    Article  Google Scholar 

  17. Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie D, Bilham L, Snape J (2009) Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119:383–395

    PubMed  Article  CAS  Google Scholar 

  18. Haldane JBS (1919) The combination of Linkage values and the calculation of distances between the loci of linked factors. J Genet 8:299–309

    Article  Google Scholar 

  19. Hanocq E, Laperche A, Jaminon O, Laine AL, Le Gouis J (2007) Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet 114:569–584

    PubMed  Article  CAS  Google Scholar 

  20. Hanocq E, Niarquin M, Heumez E, Rousset M, Le Gouis J (2004) Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population. Theor Appl Genet 110:106–115

    PubMed  Article  CAS  Google Scholar 

  21. Hayden MJ, Nguyen TM, Waterman A, McMichael GL, Chalmers KJ (2008) Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat. Mol Breed 21:271–281

    Article  CAS  Google Scholar 

  22. Izanloo A, Condon AG, Langridge P, Tester M, Schnurbusch T (2008) Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. J Exp Bot 59:3327–3346

    PubMed  Article  CAS  Google Scholar 

  23. Johnson DA, Richards RA, Turner NC (1983) Yield, water relations, gas exchange and surface reflectances of near isogenic wheat lines differing in glaucousness. Crop Sci 23:318–325

    Article  Google Scholar 

  24. Kato K, Miura H, Sawada S (1999) Detection of an earliness per se quantitative trait locus in the proximal region of wheat chromosome 5AL. Plant Breed 118:391–394

    Article  CAS  Google Scholar 

  25. King RW, von Wettstein-Knowles P (2000) Epicuticular waxes and regulation of ear wetting and pre-harvest sprouting in barley and wheat. Euphytica 112:157–166

    Article  Google Scholar 

  26. Kirigwi FM, van Ginkel M, Trethowan R, Sears RG, Rajaram S, Paulsen GM (2004) Evaluation of selection strategies for wheat adaptation across water regimes. Euphytica 135:361–371

    Article  Google Scholar 

  27. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  28. Kuchel H, Hollamby G, Langridge P, Williams K, Jefferies SP (2006) Identification of genetic loci associated with ear-emergence in bread wheat. Theor Appl Genet 113:1103–1112

    PubMed  Article  CAS  Google Scholar 

  29. Kulwal PL, Roy JK, Balyan HS, Gupta PK (2003) QTL mapping for growth and leaf characters in bread wheat. Plant Sci 164:267–277

    Article  CAS  Google Scholar 

  30. Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of 5 major genes and 8 quantitative trait loci controlling flowering time in a winterxspring barley (Hordeum vulgare L) cross. Genome 38:575–585

    PubMed  Article  CAS  Google Scholar 

  31. Law CN, Suarez E, Miller TE, Worland AJ (1998) The influence of the group 1 chromosomes of wheat on ear-emergence times and their involvement with vernalization and day length. Heredity 80:83–91

    Article  Google Scholar 

  32. Law CN, Worland AJ (1997) Genetic analysis of some flowering time and adaptive traits in wheat. New Phytol 137:19–28

    Article  Google Scholar 

  33. Leonova I, Pestsova E, Salina E, Efremova T, Roder M, Borner A (2003) Mapping of the Vrn-B1 gene in Triticum aestivum using microsatellite markers. Plant Breeding 122:209–212

    Article  CAS  Google Scholar 

  34. Liu Q, Ni Z, Peng H, Song W, Liu Z, Sun Q (2007) Molecular mapping of a dominant non-glaucousness gene from synthetic hexaploid wheat (Triticum aestivum L.). Euphytica 155:71–78

    Article  CAS  Google Scholar 

  35. Loss SP, Siddique KHM (1994) Morphological and physiological traits associated with wheat yield increases in Mediterranean environments. In: Advances in agronomy, vol 52. Academic Press, San Diego, pp 229–276

    Google Scholar 

  36. Manly KF, Cudmore RH Jr, Jane MM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mammal Genome 12:930–932

    Article  CAS  Google Scholar 

  37. Mason RE, Mondal S, Beecher FW, Pacheco A, Jampala B, Ibrahim AMH, Hays DB (2010) QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica 174:423–436

    Article  Google Scholar 

  38. Mathews KL, Malosetti M, Chapman S, McIntyre L, Reynolds M, Shorter R, van Eeuwijk F (2008) Multi-environment QTL mixed models for drought stress adaptation in wheat. Theor Appl Genet 117:1077–1091

    PubMed  Article  Google Scholar 

  39. McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R (2003) Catalogue of gene symbols for wheat. Tenth International Wheat Genetics Symposium, Paestum

    Google Scholar 

  40. Merah O, Deleens E, Souyris I, Monneveux P (2000) Effect of glaucousness on carbon isotope discrimination and grain yield in durum wheat. J Agron Crop Sci 185:259–265

    Article  Google Scholar 

  41. Pallotta MA, Graham RD, Langridge P, Sparrow DHB, Barker SJ (2000) RFLP mapping of manganese efficiency in barley. Theor Appl Genet 101:1100–1108

    Article  CAS  Google Scholar 

  42. Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021

    PubMed  Article  Google Scholar 

  43. Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    PubMed  Article  CAS  Google Scholar 

  44. Reynolds M, Manes Y, Izanloo A, Langridge P (2009) Phenotyping approaches for physiological breeding and gene discovery in wheat. Ann Appl Biol 155:309–320

    Article  Google Scholar 

  45. Richards RA (1984) Glaucousness in wheat, its effect on yield and related characteristics in dryland environments, and its control by minor genes. In: Sakamoto S (ed) Proceedings of 6th international wheat genetics symposium, Kyoto, Japan, pp 447–451

  46. Richards RA (1991) Crop improvement for temperate Australia—future opportunities. Field Crop Res 26:141–169

    Article  Google Scholar 

  47. Richards RA, Rawson HM, Johnson DA (1986) Glaucousness in wheat - its development and effect on water use efficiancy, gas exchange and photsynthetic tissue temperatures. Aust J Plant Physiol 13:465–473

    Google Scholar 

  48. Richards RA, Rebetzke GJ, Watt M, Condon AG, Spielmeyer W, Dolferus R (2010) Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Funct Plant Biol 37:85–97

    Article  Google Scholar 

  49. Rogowsky PM, Guidet FLY, Langridge P, Shepherd KW, Koebner RMD (1991) Isolation and characterization of wheat-rye recombinants involving chromosome arm 1DS of wheat. Theor Appl Genet 82:537–544

    Article  CAS  Google Scholar 

  50. Schon CC, Utz HF, Groh S, Truberg B, Openshaw S, Melchinger AE (2004) Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167:485–498

    PubMed  Article  Google Scholar 

  51. Shindo C, Sasakuma T, Watanabe N, Noda K (2002) Two-gene systems of vernalization requirement and narrow-sense earliness in einkorn wheat. Genome 45:563–569

    PubMed  Article  CAS  Google Scholar 

  52. Shindo C, Tsujimoto H, Sasakuma T (2003) Segregation analysis of heading traits in hexaploid wheat utilizing recombinant inbred lines. Heredity 90:56–63

    PubMed  Article  CAS  Google Scholar 

  53. Simmonds JR, Fish LJ, Leverington-Waite MA, Wang Y, Howell P, Snape JW (2008) Mapping of a gene (Vir) for a non-glaucous, viridescent phenotype in bread wheat derived from Triticum dicoccoides, and its association with yield variation. Euphytica 159:333–341

    Article  CAS  Google Scholar 

  54. Snape JW, Butterworth K, Whitechurch E, Worland AJ (2001a) Waiting for fine times: genetics of flowering time in wheat. Euphytica 119:185–190

    Article  CAS  Google Scholar 

  55. Snape JW, Sarma R, Quarrie SA, Fish L, Galiba G, Sutka J (2001b) Mapping genes for flowering time and frost tolerance in cereals using precise genetic stocks. Euphytica 120:309–315

    Article  CAS  Google Scholar 

  56. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    PubMed  Article  CAS  Google Scholar 

  57. Stelmakh AF (1993) Effects of VRN genes on heading date and agronomic traits in bread wheat. Euphytica 65:53–60

    Article  Google Scholar 

  58. Toth B, Galiba G, Feher E, Sutka J, Snape JW (2003) Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet 107:509–514

    PubMed  Article  CAS  Google Scholar 

  59. Tranquilli G, Dubcovsky J (2000) Epistatic interaction between vernalization genes Vrn-A(m)1 and Vrn-A(m)2 in diploid wheat. J Hered 91:304–306

    PubMed  Article  CAS  Google Scholar 

  60. Trevaskis B, Hemming MN, Dennis ES, Peacock WJ (2007) The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci 12:352–357

    PubMed  Article  CAS  Google Scholar 

  61. Trevaskis B, Hemming MN, Peacock WJ, Dennis ES (2006) HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol 140:1397–1405

    PubMed  Article  CAS  Google Scholar 

  62. Tsunewaki K, Ebana K (1999) Production of near-isogenic lines of common wheat for glaucousness and genetic basis of this trait clarified by their use. Genes Genet Syst 74:33–41

    Article  Google Scholar 

  63. Vales MI, Schon CC, Capettini F, Chen XM, Corey AE, Mather DE, Mundt CC, Richardson KL, Sandoval-Islas JS, Utz HF, Hayes PM (2005) Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270

    PubMed  Article  CAS  Google Scholar 

  64. van Os H, Stam P, Visser RGF, Van Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40

    PubMed  Article  CAS  Google Scholar 

  65. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    PubMed  Article  CAS  Google Scholar 

  66. Watanabe N, Takesada N, Shibata Y, Ban T (2005) Genetic mapping of the genes for glaucous leaf and tough rachis in Aegilops tauschii, the D-genome progenitor of wheat. Euphytica 144:119–123

    Article  CAS  Google Scholar 

  67. Worland AJ (1996) The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89:49–57

    Article  Google Scholar 

  68. Worland AJ, Appendino ML, Sayers EJ (1994) The distribution, in European winter wheats, of genes that influence ecoclimatic adaptability while determining photoperiodic insensitivity and plant height. Euphytica 80:219–228

    Article  Google Scholar 

  69. Worland AJ, Borner A, Korzun V, Li WM, Petrovic S, Sayers EJ (1998) The influence of photoperiod genes on the adaptability of European winter wheats (Reprinted from Wheat: Prospects for global improvement, 1998). Euphytica 100:385–394

    Article  CAS  Google Scholar 

  70. Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    PubMed  Article  CAS  Google Scholar 

  71. Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J (2004a) Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet 109:1677–1686

    PubMed  Article  CAS  Google Scholar 

  72. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    PubMed  Article  CAS  Google Scholar 

  73. Yan LL, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004b) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    PubMed  Article  CAS  Google Scholar 

  74. Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527–1536

    PubMed  Article  CAS  Google Scholar 

  75. Zadoks J, Chang T, Konzak C (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank the staff at Australian Grain Technologies, for managing the field experiments in South Australia. Thank you to Dr. Matthew Hayden and Gai McMichael, Molecular Plant Breeding Collaborative Research Centre, who assisted with genotyping and linkage map development. Many thanks also to Mayra Jacqueline Barcelo and Tamara Urbalejo Rodriguez, CIMMYT, for dedicated management and phenotyping of the population in Obregon, Mexico in 2007. Thanks to Ardashir Kharabian Masouleh for assistance in collecting phenotypic data from the field experiments in Australia in 2006. While conducting this research, A. Izanloo was supported by a PhD scholarship from the Ministry of Science, Research and Technology of Iran (MSRTI) and T. Schnurbusch partly supported by a Research Fellowship, Feodor-Lynen-Program, from the Alexander-von-Humboldt Foundation, Bonn-Bad Godesberg, Germany, and partly by the Australian Centre for Plant Functional Genomics, Adelaide, Australia. We would like to thank the Grains Research and Development Corporation, the Australian Research Council and the South Australian State Government for funding this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dion Bennett.

Additional information

D. Bennett and A. Izanloo contributed equally to this work.

Communicated by J. Snape.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2011_1740_MOESM1_ESM.doc

Supplementary Table 1 Number of markers per chromosome, chromosome length (cM) and average cM between markers per chromosome of a genetic linkage map for the Kukri × RAC875 doubled haploid population (DOC 62 kb)

122_2011_1740_MOESM2_ESM.doc

Supplementary Table 2 Summary of all QTL detected for three traits (Days to ear emergence, Zadok score and flag leaf glaucousness) in the RAC875/Kukri doubled haploid and recombinant inbred line populations, in five field experiments in South Australia (BOL06, MIN06, ROSMET) and Northern Mexico (CIMD07, CIMI07) and one glasshouse experiment. The position of each QTL on their respective chromosomes, flanking markers, additive effect at that locus (negative indicates RAC875, positive is Kukri), QTL heritability at that site and the QTL LOD score are presented (DOC 100 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bennett, D., Izanloo, A., Edwards, J. et al. Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions. Theor Appl Genet 124, 697–711 (2012). https://doi.org/10.1007/s00122-011-1740-3

Download citation

Keywords

  • Quantitative Trait Locus
  • Doubled Haploid
  • Quantitative Trait Locus Analysis
  • Quantitative Trait Locus Mapping
  • Flag Leaf