Isolation, fine mapping and expression profiling of a lesion mimic genotype, spl NF4050-8 that confers blast resistance in rice

Abstract

We evaluated a large collection of Tos17 mutant panel lines for their reaction to three different races of Magnaporthe oryzae and identified a lesion mimic mutant, NF4050-8, that showed lesions similar to naturally occurring spl5 mutant and enhanced resistance to all the three blast races tested. Nested modified-AFLP using Tos17-specific primers and southern hybridization experiments of segregating individuals indicated that the lesion mimic phenotype in NF4050-8 is most likely due to a nucleotide change acquired during the culturing process and not due to Tos17 insertion per se. Inheritance and genetic analyses in two japonica × indica populations identified an overlapping genomic region of 13 cM on short arm of chromosome 7 that was linked with the lesion mimic phenotype. High-resolution genetic mapping using 950 F3 and 3,821 F4 plants of NF4050-8 × CO39 delimited a 35 kb region flanked by NBARC1 (5.262 Mb) and RM8262 (5.297 Mb), which contained 6 ORFs; 3 of them were ‘resistance gene related’ with typical NBS–LRR signatures. One of them harbored a NB–ARC domain, which had been previously demonstrated to be associated with cell death in animals. Microarray analysis of NF4050-8 revealed significant up-regulation of numerous defense/pathogenesis-related genes and down-regulation of heme peroxidase genes. Real-time PCR analysis of WRKY45 and PR1b genes suggested possible constitutive activation of a defense signaling pathway downstream of salicylic acid but independent of NH1 in these mutant lines of rice.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Agrawal GK, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H (2001) Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol 125:1248–1257

    CAS  Article  PubMed  Google Scholar 

  2. Albrecht M, Takken FLW (2006) Update on the domain architectures of NLRs and R proteins. Biochem Biophys Res Commun 339:459–462

    CAS  Article  PubMed  Google Scholar 

  3. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  Article  PubMed  Google Scholar 

  4. Arase S, Zhao CM, Akimitsu K, Yamamoto M, Ichii M (2000) A recessive lesion mimic mutant of rice with elevated resistance to fungal pathogens. J Gen Plant Pathol 66:109–116

    Article  Google Scholar 

  5. Badigannavar AM, Kale DM, Eapen S, Murty GSS (2002) Inheritance of disease lesion mimic leaf trait in groundnut. J Hered 93:50–52

    CAS  Article  PubMed  Google Scholar 

  6. Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in plant–microbe interactions. Science 276:726–733

    CAS  Article  PubMed  Google Scholar 

  7. Batista R, Nelson S, Tiago L, Oliveira MM (2008) Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion. Proc Natl Acad Sci USA 105:3640–3645

    CAS  Article  PubMed  Google Scholar 

  8. Belkhadir Y, Subramaniam R, Dangl JL (2004) Plant disease resistance protein signaling: NBS–LRR proteins and their partners. Curr Opin Plant Biol 7:391–399

    CAS  Article  PubMed  Google Scholar 

  9. Blair MW, Hedetale V, Mccouch SR (2002) Fluorescent-labeled microsatellite panels useful for detecting allelic diversity in cultivated rice (Oryza sativa L.). Theor Appl Genet 105:449–457

    CAS  Article  PubMed  Google Scholar 

  10. Blair MW, Garris JA, Iyer AS, Chapman B, Kresovich S, Mccouch SR (2003) High resolution genetic mapping and candidate gene identification at the xa5 locus for bacterial blight resistance in rice (Oryza sativa L.). Theor Appl Genet 107:62–73

    CAS  Article  PubMed  Google Scholar 

  11. Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, Daelen RVAN, Van der Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705

    Article  PubMed  Google Scholar 

  12. Chen X, Temnykh S, Xu Y, Cho YG, Mccouch SR (1997) Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor Appl Genet 95:553–567

    CAS  Article  Google Scholar 

  13. Chen X, Jianwei P, Cheng J, Jiang G, Jin Y, Gu Z, Qian Q, Zhai W, Ma B (2009) Fine genetic mapping and physical delimitation of the lesion mimic gene spotted leaf 5 (spl5) in rice (Oryza sativa L.). Mol Breed. doi:10.1007/s11032-009-9299-2

  14. Cho RJ, Mindrinos M, Richards DR, Sapolsky RJ, Anderson M, Drenkard E, Dewdney L, Reuber TL, Stammers M, Federspiel N, Theologis A, Yang WH, Hubbell E, Au M, Chung EY, Lashkari D, Lemieux B, Dean C, Lipshutz RJ, Ausubel FM, Davis RW, Oefner PJ (1999) Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nat Genet 23:203–207

    CAS  Article  PubMed  Google Scholar 

  15. Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995

    CAS  Article  PubMed  Google Scholar 

  16. Collins N, Drake J, Ayliffe M, Sun Q, Ellis J, Hulbert S, Pryora T (1999) Molecular characterization of the maize Rp1-D rust Resistance haplotype and its mutants. Plant Cell 11:1365–1376

    CAS  Article  PubMed  Google Scholar 

  17. Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 619832

  18. Dangl JL, Mcdowell JM (2006) Two modes of pathogen recognition by plants. Proc Natl Acad Sci USA 103:8575–8576

    CAS  Article  PubMed  Google Scholar 

  19. Dangl JL, Dietrich RA, Richberg MH (1996) Death don’t have no mercy: cell death programs in plant–microbe interactions. Plant Cell 10:1793–1807

    Article  Google Scholar 

  20. Dietrich RA, Delaney TP, Uknes SJ, Ward ER, Ryals JA, Dangl JL (1994) Arabidopsis mutants simulating disease resistance response. Cell 77:565–577

    CAS  Article  PubMed  Google Scholar 

  21. Dietrich RA, Richberg MH, Schmidt R, Dean C, Dangl JL (1997) A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell 88:685–694

    CAS  Article  PubMed  Google Scholar 

  22. Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723

    CAS  Article  PubMed  Google Scholar 

  23. Fuse T, Iba K, Satoh H, Nishimura M (1993) Characterization of a rice mutant having an increased susceptibility to light stress at high temperature. Physiol Plant 89:799–804

    CAS  Article  Google Scholar 

  24. Gray J, Close PS, Briggs SP, Johal GS (1997) A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell 89:25–31

    CAS  Article  PubMed  Google Scholar 

  25. Gray J, Janick-Buckner D, Buckner B, Close PS, Johal GS (2002) Light-dependent death of maize lls1 cells is mediated by mature chloroplasts. Plant Physiol 130:1894–1907

    CAS  Article  PubMed  Google Scholar 

  26. Greenberg JT, Ausubel FM (1993) Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant J 4:327–341

    CAS  Article  PubMed  Google Scholar 

  27. Greenberg JT, Guo A, Klessig DF, Ausubel FM (1994) Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77:551–563

    CAS  Article  PubMed  Google Scholar 

  28. Hammond-Kosack KE, Jones JDG (1997) Plant disease resistance genes. Ann Rev Plant Physiol Plant Mol Biol 48:575–607

    CAS  Article  Google Scholar 

  29. Hayashi N (2005) MAFF microorganism genetic resources manual. In: Rice blast fungus, vol 18. National Institute of Agrobiological Sciences, Tsukuba

  30. Hirochika H (1997) Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol Biol 35:231–240

    CAS  Article  PubMed  Google Scholar 

  31. Hirochika H (2001) Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol 4:118–122

    CAS  Article  PubMed  Google Scholar 

  32. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788

    CAS  Article  PubMed  Google Scholar 

  33. Hoisington DA, Neuffer MG, Walbot V (1982) Disease lesion mimics in maize. I. Effect of genetic background, temperature, developmental age, and wounding on necrotic spot formation with Les1. Dev Biol 93:381–388

    CAS  Article  PubMed  Google Scholar 

  34. Hu G, Richter TE, Hulbert SH, Pryor T (1996) Disease lesion mimicry caused by mutations in the rust resistance gene rpl. Plant Cell 8:1367–1376

    CAS  Article  PubMed  Google Scholar 

  35. Hu G, Yalpani N, Briggs SP, Johal GS (1998) A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 10:1095–1106

    CAS  Article  PubMed  Google Scholar 

  36. Iwata N, Omura T, Satoh H (1978) Linkage studies in rice (Oryza sativa L.). On some mutants for physiological leaf spots. J Fac Agric Kyushu Univ 22:243–251

    Google Scholar 

  37. Johal GS (2007) Disease lesion mimic mutants of maize. APSnet. http://www.apsnet.org/online/feature/mimics/default.asp. Accessed 24 Jan 2008

  38. Johal GS, Hulbert S, Briggs SP (1995) Disease lesion mimics of maize: a model for cell death in plants. Bioessays 17:685–692

    Article  Google Scholar 

  39. Kawasaki S, Murakami Y (2000) Genome analysis of Lotus japonicus. J Plant Res 113:497–506

    Article  Google Scholar 

  40. Kottapalli KR, Rakwal R, Satoh K, Shibato J, Kottapalli P, Iwahashi H, Kikuchi S (2007) Transcriptional profiling of indica rice cultivar IET8585 (Ajaya) infected with bacterial leaf blight pathogen Xanthomonas oryzae pv. oryzae. Plant Physiol Biochem 45:834–850

    CAS  Article  PubMed  Google Scholar 

  41. Larkin PJ, Scowcroft WR (1981) Somaclonal variation: a novel source of variability from cell culture for plant improvement. Theor Appl Genet 60:197–214

    Article  Google Scholar 

  42. Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E (1998) Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J 16:223–233

    CAS  Article  PubMed  Google Scholar 

  43. Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    CAS  Article  PubMed  Google Scholar 

  44. Lorrain S, Vailleau F, Balague C, Roby D (2003) Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci 8:263–271

    CAS  Article  PubMed  Google Scholar 

  45. Lyngkjaer MF, Newton AC, Atzema JL, Baker SJ (2000) The Barley mlo-gene: an important powdery mildew resistance source. Agronomie 20:745–756

    Article  Google Scholar 

  46. Mahalingam R, Gomez-Buitrago A, Eckardt N, Shah N, Guevara-Garcia A, Day P, Raina R, Fedoroff NV (2003) Characterizing the stress/defense transcriptome of Arabidopsis. Genome Biol 4:R20.1–R20.14

    Article  Google Scholar 

  47. Mchale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS–LRR proteins: adaptable guards. Genome Biol 7:212

    Article  PubMed  Google Scholar 

  48. Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319

    CAS  Article  PubMed  Google Scholar 

  49. Mizobuchi R, Hirabayashi H, Kaji R, Nishizawa Y, Yoshimura A, Satoh H, Ogawa T, Okamoto M (2002) Isolation and characterization of rice lesion-mimic mutants with enhanced resistance to rice blast and bacterial blight. Plant Sci 163:345–353

    CAS  Article  Google Scholar 

  50. Mori M, Tomita C, Sugimoto K, Hasegawa M, Hayashi N, Dubouzet JG, Ochiai H, Sekimoto H, Hirochika H, Kikuchi S (2007) Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol 63:847–860

    CAS  Article  PubMed  Google Scholar 

  51. Nair SK, Tomar SMS (2001) Genetical and anatomical analyses of a leaf flecking mutant in wheat. Euphytica 121:53–58

    Article  Google Scholar 

  52. Neuffer MG, Hoisington DA, Walbot V, Pawar SE (1983) The genetic control of disease symptoms. In: Gene structure and function in higher plants. Oxford/IBH Pub. Co, New Delhi, pp 123–124

  53. Noutoshi Y, Kuromori T, Wada T, Hirayama T, Kamiya A, Imura Y, Yasuda M, Nakashita H, Shirasu K, Shinozaki K (2006) Loss of NECROTIC SPOTTED LESIONS 1 associates with cell death and defense responses in Arabidopsis thaliana. Plant Mol Biol 62:29–42

    CAS  Article  PubMed  Google Scholar 

  54. Panaud O, Chen X, Mccouch SR (1996) Development of SSR markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 16:597–607

    Google Scholar 

  55. Penning BW, Johal GS, Mcmullen MD (2004) A major suppressor of cell death, slm1, modifies the expression of the maize (Zea mays L.) lesion mimic mutation les23. Genome 47:961–969

    CAS  Article  PubMed  Google Scholar 

  56. Pryor AJ (1987) The origin and structure of fungal disease resistance genes in plants. Trends Genet 3:157–161

    Article  Google Scholar 

  57. Rairdan GJ, Moffett P (2006) Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell 18:2082–2093

    CAS  Article  PubMed  Google Scholar 

  58. Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16:1139–1149

    CAS  Article  PubMed  Google Scholar 

  59. Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754

    CAS  Article  PubMed  Google Scholar 

  60. Schenk PM, Kazan K, Wilson I, Anderson PJ, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660

    CAS  Article  PubMed  Google Scholar 

  61. Shah J, Kachroo P, Klessig DF (1999) The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders defensin gene expression salicylic acid dependent. Plant Cell 11:191–206

    CAS  Article  PubMed  Google Scholar 

  62. Sharov AA, Dudekula DB, Ko MS (2005) A web-based tool for principal component and significance analysis of microarray data. Bioinformatics 21:2548–2549

    CAS  Article  PubMed  Google Scholar 

  63. Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K, Toki S, Takatsuji H (2007) Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell 19:2064–2076

    CAS  Article  PubMed  Google Scholar 

  64. Shirano Y, Kachroo P, Shah J, Klessig DF (2002a) A gain-of-function mutation in an Arabidopsis Toll Interleukin1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14:3149–3162

    CAS  Article  PubMed  Google Scholar 

  65. Shirano Y, Kachroo P, Shah J, Klessig DF (2002b) A gain-of function mutation in an Arabidopsis toll interleukin1 receptor nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14:3149–3162

    CAS  Article  PubMed  Google Scholar 

  66. Takahashi A, Kawasaki T, Henmi K, Shi IK, Kodama O, SATOH H, Shimamoto K (1999) Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J 17:535–5453

    CAS  Article  PubMed  Google Scholar 

  67. Tanabe T, Chamaillard M, Ogura Y, Zhu L, Qiu S, Masumoto J, Ghosh P, Moran A, Predergast MM, Tromp G, Williams CJ, Inohara N, Núñez G (2004) Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO J 23:1587–1597

    CAS  Article  PubMed  Google Scholar 

  68. Temnykh S, Park NA, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, Mccouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712

    CAS  Article  Google Scholar 

  69. Ting JP, Davis BK (2005) CATERPILLER: a novel gene family important in immunity, cell death, and diseases. Annu Rev Immunol 23:387–414

    CAS  Article  PubMed  Google Scholar 

  70. van der Biezen EA, Jones JDG (1998) The NB-ARC domain: a novel signaling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 8:R226–R227

    Article  PubMed  Google Scholar 

  71. van Ooijen G, Mayr G, Kasiem MMA, Albrecht M, Cornelissen BJC, Takken FLW (2008) Structure–function analysis of the NB-ARC domain of plant disease resistance proteins. J Exp Bot 59:1383–1397

    Article  PubMed  Google Scholar 

  72. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  Article  PubMed  Google Scholar 

  73. Vos P, Simons G, Jesse T, Wijbrandi J, Heinen L, Hogers R, Frijters A, Groenendijk J, Diergaarde P, Reijans M, Fierens-Onstenk J, de Both M, Peleman J, Liharska T, Hontelez J, Zabeau M (1998) The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nat Biotechnol 16:1365–1369

    CAS  Article  PubMed  Google Scholar 

  74. Wolter M, Hollricher K, Salaminip F, Schulze-Lefert P (1993) The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defense mimic phenotype. Mol Gen Genet 239:122–128

    CAS  PubMed  Google Scholar 

  75. Wu J, Mizuno H, Hayashi-Tsugane M, Ito Y, Chiden Y, Fujisawa M, Katagiri S, Saji S, Yoshiki S, Karasawa W, Yoshihara R, Hayashi A, Kobayashi H, Ito K, Hamada M, Okamoto M, Ikeno M, Ichikawa Y, Katayose Y, Yano M, Matsumoto T, Sasaki T (2003) Physical maps and recombination frequency of six rice chromosomes. Plant J 36:720–730

    CAS  Article  PubMed  Google Scholar 

  76. Wu C, Bordeos A, Madamba MRS, Baraoidan M, Ramos M, Wang GL, Leach JE, Leung H (2008) Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics 279:605–619

    CAS  Article  PubMed  Google Scholar 

  77. Xiong L, Zhu JK (2001) Abiotic stress signal transduction in plants: molecular and genetic perspectives. Physiol Plant 112:152–166

    CAS  Article  PubMed  Google Scholar 

  78. Xu X, Kawasaki S, Fujimura T, Wang CT (2005) A protocol for high throughput extraction of DNA from rice leaves. Plant Mol Biol Rep 27:291–295

    Article  Google Scholar 

  79. Xu X, Chen H, Fujimura T, Kawasaki S (2008) Fine mapping of a strong QTL of field resistance against rice blast, Pikahei-1(t), from upland rice Kahei, utilizing a novel resistance evaluation system in the greenhouse. Theor Appl Genet 117:997–1008

    Article  PubMed  Google Scholar 

  80. Xu X, Babu R, Fujimura T, Kawasaki S (2009) A high-throughput, low cost gel-based SNP assay for positional cloning and marker assisted breeding of useful genes in cereals. Plant Breed 128:325–331

    CAS  Article  Google Scholar 

  81. Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K (2002) A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA 99:7530–7535

    CAS  Article  PubMed  Google Scholar 

  82. Yin Z, Chen J, Zeng L, Goh M, Leung H, Khush GS, Wang GL (2000) Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant Microbe Interact 13:869–876

    CAS  Article  PubMed  Google Scholar 

  83. Yoshimura A, Ideta O, Iwata N (1997) Linkage map of phenotype and RFLP markers in rice. Plant Mol Biol 35:49–60

    CAS  Article  PubMed  Google Scholar 

  84. Yu J, Hu S, Wang J, WONG GK, Li S et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    CAS  Article  PubMed  Google Scholar 

  85. Zeng LR, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm BH, Leung H, Wang GL (2004) Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-Box/Armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16:2795–2808

    CAS  Article  PubMed  Google Scholar 

  86. Zhang QF, Shen BZ, Dai XK, Mei MH, Maroof MAS, Li ZB (1994) Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. Proc Natl Acad Sci USA 91:8675–8679

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Raman Babu or Shinji Kawasaki.

Additional information

Communicated by J.-B. Veyrieras.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Babu, R., Jiang, CJ., Xu, X. et al. Isolation, fine mapping and expression profiling of a lesion mimic genotype, spl NF4050-8 that confers blast resistance in rice. Theor Appl Genet 122, 831–854 (2011). https://doi.org/10.1007/s00122-010-1490-7

Download citation

Keywords

  • Leucine Rich Repeat
  • Nucleotide Binding Site
  • Tos17
  • WRKY Domain
  • Leucine Rich Repeat Domain