Skip to main content
Log in

Genetic analyses of the host-pathogen system Turnip yellows virus (TuYV)—rapeseed (Brassica napus L.) and development of molecular markers for TuYV-resistance

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The aphid transmitted Turnip yellows virus (TuYV) has become a serious pathogen in many rapeseed (Brassica napus L.) growing areas. Three-years’ field trials were carried out to get detailed information on the genetics of TuYV resistance derived from the resynthesised B. napus line ‘R54’ and to develop closely linked markers. F1 plants and segregating doubled-haploid (DH) populations derived from crosses to susceptible cultivars were analysed using artificial inoculation with virus-bearing aphids, followed by DAS-ELISA. Assuming a threshold of E 405 = 0.1 in ELISA carried out in December, the results led to the conclusion that pre-winter inhibition of TuYV is inherited in a monogenic dominant manner. However, the virus titre in most resistant lines increased during the growing period, indicating that the resistance is incomplete and that the level of the virus titre is influenced by environmental factors. Bulked-segregant marker analysis for this resistance locus identified two closely linked SSR markers along with six closely linked and three co-segregating AFLP markers. Two AFLP markers were converted into co-dominant STS markers, facilitating efficient marker-based selection for TuYV resistance. Effective markers are particularly valuable with respect to breeding for TuYV resistance, because artificial inoculation procedures using virus-bearing aphids are extremely difficult to integrate into practical rapeseed breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barker H, Harrison BD (1984) Polygenic resistance to Potato leafroll virus (PLRV). In: Annual Report Scottish Crop Research Institute, pp 194–195

  • Barker H, Solomon RM (1990) Indication of simple genetic control of one aspect of multigenic resistance to Potato leafroll virus. In: Abstract 11th Trien Conference on EAPR, Edinburgh, p 473

  • Barker H, Solomon-Blackburn RM, McNicol JW, Bradshaw JE (1994) Resistance to Potato leaf roll virus multiplication in potato is under major gene control. Theor Appl Genet 88:754–758

    Article  Google Scholar 

  • Bassam BJ, Caetano-Anollés G (1993) Silver staining of DNA in polyacrylamide gels. Appl Biochem Biotechnol 42:181–188

    Article  CAS  Google Scholar 

  • Basunanda P, Spiller TH, Hasan M, Gehringer A, Schondelmaier J, Lühs W, Friedt W, Snowdon R (2007) Marker-assisted increase of genetic diversity in a double-low seed quality winter oilseed rape genetic background. Plant Breeding 126:581–587

    Article  Google Scholar 

  • Beuve M, Stevens M, Liu H-Y, Wintermantel WM, Hauser S, Lemaire O (2008) Biological and molecular characterization of an American sugar beet-infecting Beet western yellows virus isolate. Plant Dis 92:51–60

    Article  CAS  Google Scholar 

  • Choi SR, Teakle GR, Plaha P, Kim JH, Allender CJ, Beynon E, Piao ZY, Soengas P, Han TH, King GJ, Barker GC, Hand P, Lydiate DJ, Batley J, Edwards D, Koo DH, Bang JW, Park B-S, Lim YP (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115:777–792

    Article  CAS  PubMed  Google Scholar 

  • Clark MF, Adams AN (1977) Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol 4:475–483

    Article  Google Scholar 

  • Derrick PM, Barker H (1997) Short and long distance spread of Potato leafroll luteovirus: effects of host genes and transgenes conferring resistance to virus accumulation in potato. J Gen Virol 78:243–251

    CAS  PubMed  Google Scholar 

  • Diederichsen E, Sacristan MD (1996) Disease response of resynthesized Brassica napus L. lines carrying different contributions of resistance to Plasmodiophora brassicae Wor. Plant Breeding 115:5–10

    Article  Google Scholar 

  • Dreyer F, Graichen K, Jung C (2001) A major quantitative trait locus for resistance to Turnip yellows virus (TuYV, syn. Beet western yellows virus, BWYV) in rapeseed. Plant Breeding 120:457–462

    Article  CAS  Google Scholar 

  • Duffus JE, Milbrath GM (1977) Susceptibility and immunity in soybean to Beet western yellows virus. Phytopathology 67:269–272

    Article  Google Scholar 

  • Ford CM, Paltridge NG, Rathjen JP, Moritz RL, Simpson RJ, Symons RH (1998) Rapid and informative assay for Yd2, the barley yellow dwarf virus resistance gene, based on the nucleotide sequence of a closely linked gene. Mol Breeding 4:23–31

    Article  CAS  Google Scholar 

  • Girke A (2002) Neue Genpools aus resynthetisiertem Raps (Brassica napus L.) für die Hybridzüchtung. Dissertation, Georg August University, Göttingen

  • Graichen K (1994) Nachweis von Resistenz gegenüber dem Turnip yellows luteovirus (TuYV) in Winterraps und verwandten Arten. Vortr Pflanzenzüchtung 30:132–143

    Google Scholar 

  • Graichen K (1997) Befallssituation mit Viruskrankheiten in Winterraps im Anbaujahr 1995/96 und erste Befunde zum Jahr 1996/97. Phytomedizin 27:57–59

    Google Scholar 

  • Graichen K (1998) Einfluß von Umweltbedingungen auf die Symptom- und Resistenzausprägung von Winterraps nach Inokulation mit dem Turnip yellows virus. Mitt Biol Bundesanst 357:291–292

    Google Scholar 

  • Graichen K (1999) Häufig verkannt: Die Wasserrübenvergilbung an Winterraps. Der Pflanzenarzt 9–10:8–11

    Google Scholar 

  • Graichen K, Rabenstein F (1996) European isolates of Beet western yellows virus (BWYV) from oilseed rape (Brassica napus L. ssp. napus) are non-pathogenic on sugar beet (Beta vulgaris L. var. altissima) but represent isolates of Turnip yellows virus (TuYV). J Plant Dis Prot 103:233–245

    Google Scholar 

  • Hasan M, Seyis F, Badani AG, Pons-Kuhnemann J, Lühs W, Friedt W, Snowdon RJ (2006) Surveying genetic diversity in the Brassica napus gene pool using SSR markers. Genet Res Crop Evol 53:793–802

    Article  CAS  Google Scholar 

  • Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28

    Article  CAS  PubMed  Google Scholar 

  • Jones RAC, Coutts BA, Hawkes J (2007) Yield-limiting potential of Beet western yellows virus in Brassica napus. Aust J Agric Res 58:788–801

    Article  Google Scholar 

  • Kim JS, Chung TY, King GJ, Jin M, Yang T-J, Jin Y-M, Kim H-I, Park B-S (2006) A sequence-tagged linkage map of Brassica rapa. Genetics 174:29–39

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lowe AJ, Moule C, Trick M, Edwards KJ (2004) Efficient lagre-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112

    Article  CAS  PubMed  Google Scholar 

  • Lozán JL, Kausch H (2007) Angewandte Statistik für Naturwissenschaftler, 4th edn. Wissenschaftliche Auswertungen, Hamburg, pp 214–215

    Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  Google Scholar 

  • Mithen RF, Magrath R (1992) Glucosinolates and resistance to Leptosphaeria maculans in wild and cultivated Brassica species. Plant Breeding 108:60–68

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res 19:4321–4325

    Article  Google Scholar 

  • Niks RE, Habekuß A, Bekele B, Ordon F (2004) A novel major gene on chromosome 6H for resistance of barley against the Barley yellow dwarf virus. Theor Appl Genet 109:1536–1543

    Article  CAS  PubMed  Google Scholar 

  • Oetting WS, Lee HK, Flanders DJ, Wiesner GL, Sellers TA, King RA (1995) Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers. Genomics 30:450–458

    Article  CAS  PubMed  Google Scholar 

  • Ordon F, Friedt W (1993) Mode of inheritance and genetic diversity of BaMMV resistance of exotic barley germplasms carrying genes different from ‘ym4’. Theor Appl Genet 86:229–233

    Article  Google Scholar 

  • Oregin (2005) http://www.oregin.info/Stakeholders/meetings/220305/pres/ teakle220305.pdf. Cited 22 Feb 2008

  • Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  CAS  PubMed  Google Scholar 

  • Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villenger M-J, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523

    Article  CAS  PubMed  Google Scholar 

  • Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179:1547–1558

    Article  CAS  PubMed  Google Scholar 

  • Randles JW, Rathjen JP (2000) Genus Luteovirus. In: Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Martelli GP, Mayo MA, Summers MD (eds) Virus taxonomy. Sixth report of the international committee on taxonomy of viruses. Springer, New York, pp 379–383

    Google Scholar 

  • Read MA, Hewson RT (1988) Prevention of Beet western yellows virus (BWYV) in winter oilseed rape by control of aphid vectors with deltamethrin. Brighton crop protection conference—pest and diseases, pp 989–997

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Rygulla W, Snowdon RJ, Eynck C, von Tiedemann A, Lühs W, Friedt W (2007) Broadening the genetic basis of Verticillium longisporum resistance in Brassica napus by interspecific hybridisation. Phytopathology 97:1391–1396

    Article  CAS  PubMed  Google Scholar 

  • Scheurer KS, Friedt W, Huth W, Waugh R, Ordon F (2001) QTL analysis of tolerance to a German strain of BYDV-PAV in barley (Hordeum vulgare L.). Theor Appl Genet 103:1074–1083

    Article  CAS  Google Scholar 

  • Schliephake E, Graichen K, Rabenstein F (2000) Investigations on the vector transmission of the Beet mild yellowing virus (BMYV) and the Turnip yellows virus (TuYV). J Plant Dis Prot 107:81–87

    Google Scholar 

  • Smith HG, Hinckes JA (1985) Luteovirus interactions between oilseed rape and sugar beet. In: Proceedings of the 1984 British Crop Protection Conference—Pest and Diseases, pp 831–835

  • Sun Z, Wang Z, Tu J, Zhang J, Yu F, McVetty PBE, Li G (2007) An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theor Appl Genet 114:1305–1317

    Article  CAS  PubMed  Google Scholar 

  • Thomas PE, Hang AN, Reed G, Gilliland GC, Reisenauer G (1993) Potential role of winter rapeseed culture on the epidemiology of potato leaf roll disease. Plant Dis 77:420–423

    Google Scholar 

  • Torres MW, Corrêa RL, Schrago CG (2005) Analysis of differential selective forces acting on the coat protein (P3) of the plant virus family Luteoviridae. Genet Mol Res 4:790–802

    CAS  PubMed  Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B. V., Wageningen

    Google Scholar 

  • Veidt I, Lot H, Leiser M, Scheidecker D, Guilley H, Richards K, Jonard G (1988) Nucleotide sequence of Beet western yellows virus RNA. Nucleic Acids Res 16:9917–9932

    Article  CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  Google Scholar 

  • Walkey DGA, Pink DAC (1990) Studies on resistance to Beet western yellows virus in lettuce and the occurence of field sources of the virus. Plant Pathol 39:141–155

    Article  Google Scholar 

  • Walsh JA, Perrin RM, Miller A, Laycock DS (1989) Studies on Beet western yellows virus in winter oilseed rape (Brassica napus ssp. oleifera) and the effect of insecticidal treatment on its spread. Crop Prot 8:137–143

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge SW Seed GmbH Hadmersleben for providing the DH-lines and Norddeutsche Pflanzenzucht (NPZ) for placing the F1-hybrids at our disposal. This work was supported by grants of the Gemeinschaft zur Förderung der privaten deutschen Pflanzenzüchtung e.V. (GFP) and Arbeitsgemeinschaft industrieller Forschungsvereinigungen “Otto von Guericke” e.V. (AiF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Ordon.

Additional information

Communicated by R. Visser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juergens, M., Paetsch, C., Krämer, I. et al. Genetic analyses of the host-pathogen system Turnip yellows virus (TuYV)—rapeseed (Brassica napus L.) and development of molecular markers for TuYV-resistance. Theor Appl Genet 120, 735–744 (2010). https://doi.org/10.1007/s00122-009-1194-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1194-z

Keywords

Navigation