Skip to main content
Log in

The pattern of genetic diversity of Guinea-race Sorghum bicolor (L.) Moench landraces as revealed with SSR markers

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The Guinea-race of sorghum [Sorghum bicolor (L.) Moench] is a predominantly inbreeding, diploid cereal crop. It originated from West Africa and appears to have spread throughout Africa and South Asia, where it is now the dominant sorghum race, via ancient trade routes. To elucidate the genetic diversity and differentiation among Guinea-race sorghum landraces, we selected 100 accessions from the ICRISAT sorghum Guinea-race Core Collection and genotyped these using 21 simple sequence repeat (SSR) markers. The 21 SSR markers revealed a total of 123 alleles with an average Dice similarity coefficient of 0.37 across 4,950 pairs of accessions, with nearly 50% of the alleles being rare among the accessions analysed. Stratification of the accessions into 11 countries and five eco-regional groups confirmed earlier reports on the spread of Guinea-race sorghum across Africa and South Asia: most of the variation was found among the accessions from semi-arid and Sahelian Africa and the least among accessions from South Asia. In addition, accessions from South Asia most closely resembled those from southern and eastern Africa, supporting earlier suggestions that sorghum germplasm might have reached South Asia via ancient trade routes along the Arabian Sea coasts of eastern Africa, Arabia and South Asia. Stratification of the accessions according to their Snowden classification indicated clear genetic variation between margeritiferum, conspicuum and Roxburghii accessions, whereas the gambicum and guineënse accessions were genetically similar. The implications of these findings for sorghum Guinea-race plant breeding activities are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bhattramakki D, Dong JM, Chhabra AK, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L) Moench. Genome 43:988–1002

    Article  CAS  PubMed  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  Google Scholar 

  • Brown SM, Hopkins MS, Mitchell SE, Senior ML, Wang TY, Duncan RR, Gonzalez-Candelas F, Kresovich S (1996) Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 93:190–198

    Article  CAS  Google Scholar 

  • Chittenden LM, Schertz KF, Lin Y-R, Wing RA, Paterson AH (1994) A detailed RFLP map of Sorghum bicolor × S propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments. Theor Appl Genet 87:925–933

    Article  CAS  Google Scholar 

  • Condit R, Hubble SP (1991) Abundance and DNA sequence of two-base repeat regions in tropical tree genomes. Genome 34:66–71

    CAS  PubMed  Google Scholar 

  • Dahlberg JA, Zhang X, Hart GE, Mullet JE (2002) Comparative assessment of variation among sorghum germplasm accessions using seed morphology and RAPD Measurements. Crop Sci 42:291–296

    PubMed  Google Scholar 

  • Dean RE, Dahlberg JA, Hopkins MS, Mitchell SE, Kresovich S (1999) Genetic redundancy and diversity among ‘Orange’ accessions in the US national sorghum collection as assessed with simple sequence repeat (SSR) markers. Crop Sci 39:1215–1221

    Google Scholar 

  • Deu M, Gonzalez-de-Leon D, Glaszmann J-C, Degremont I, Chantereau J, Lanaud C, Hamon P (1994) RFLP diversity in cultivated sorghum in relation to racial differentiation. Theor Appl Genet 88:838–844

    Article  CAS  Google Scholar 

  • Deu M, Hamon P, Chantereau J, Dufour P, D’Hont A, Lanaud C (1995) Mitochondrial DNA diversity in wild and cultivated sorghum. Genome 38:635–645

    CAS  PubMed  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecological associations between species. Ecology 26:297–302

    Google Scholar 

  • Djè Y, Forcioli D, Ater M, Lefèbvre C, Vekemans X (1999) Assessing population genetic structure of sorghum landraces from North-western Morocco using allozyme and microsatellite markers. Theor Appl Genet 99:157–163

    Article  Google Scholar 

  • Djè Y, Heuertz M, Lefèbvre C, Vekemans X (2000) Assessment of genetic diversity within and among germplasm accessions in cultivated sorghum using microsatellite markers. Theor Appl Genet 100:918–925

    Article  CAS  Google Scholar 

  • Doggett H (1988) Sorghum, 2nd edn. Longman Scientific & Technical, London

    Google Scholar 

  • FAOSTAT (2004) http://appsfaoorg/defaulthtm

  • Felsenstein J (1989) phylip—Phylogeny inference package (version 32). Cladistics 5:164–166

    Google Scholar 

  • Fregene MA, Suarez M, Mkumbira J, Kulembeka H, Ndedya E, Kulaya A, Mitchel S, Gullberg U, Rosling H, Dixon AGO, Dean R, Kresovich S (2003) Simple sequence repeat marker diversity in cassava landraces: genetic diversity and differentiation in an asexually propagated crop. Theor Appl Genet 107:1083–1093

    Article  CAS  PubMed  Google Scholar 

  • Ghebru B, Schmidt RJ, Bennetzen JL (2002) Genetic diversity of Eritrean sorghum landraces assessed with simple sequence repeat (SSR) markers. Theor Appl Genet 105:229–236

    Article  CAS  PubMed  Google Scholar 

  • Grenier C, Deu M, Kresovich S, Bramel-Cox PJ, Hamon P (2000) Assessment of genetic diversity in three subsets constituted from the ICRISAT sorghum collection using random vs non-random sampling procedures. B. Using molecular markers. Theor Appl Genet 101:197–202

    Article  CAS  Google Scholar 

  • Grenier C, Bramel-Cox PJ, Hamon P (2001a) Core collection of sorghum: I. Stratification based on eco-geographical data. Crop Sci 41:234–240

    Google Scholar 

  • Grenier C, Hamon P, Bramel-Cox PJ (2001b) Core collection of sorghum: II. Comparison of three random sampling strategies. Crop Sci 41:241–246

    Google Scholar 

  • Harlan JR, de Wet JMJ (1972) A simplified classification of cultivated sorghum. Crop Sci 12:172–176

    Google Scholar 

  • Jordan DR, Tao Y, Godwin ID, Henzell RG, Cooper M, McIntyre CL (2003) Prediction of hybrid performance in grain sorghum using RFLP markers. Theor Appl Genet 106:559–567

    CAS  PubMed  Google Scholar 

  • Kimura M, Crow JF (1964) The numbers of alleles that can be maintained in a finite population. Genetics 49:725–738

    CAS  PubMed  Google Scholar 

  • Kong L, Dong J, Hart GE (2000) Characteristics, linkage-map positions, and allelic differentiation of Sorghum bicolour (L.) Moench DNA simple-sequence repeats (SSRs). Theor Appl Genet 101:438–448

    Article  CAS  Google Scholar 

  • Kresovich S, Szewc-McFadden AK, Bliek SM, McFerson JR (1995) Abundance and characterisation of simple-sequence repeats (SSRs) isolated from a size-fractionated genomic library of Brassica napus L. (rapeseed). Theor Appl Genet 91:206–211

    Article  CAS  Google Scholar 

  • Kruskal JB (1964a) Multidimensional scaling by optimising goodness of fit to a non-metric hypothesis. Psychometrika 29:1–27

    Google Scholar 

  • Kruskal JB (1964b) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:28–42

    Google Scholar 

  • Liu K, Muse S (2004) powermarker: new genetic data analysis software Version 3.0. Free program distributed by the author over the internet from http://www.powermarker.net

  • Mace ES, Buhariwalla HK, Crouch JH (2003) A high throughput DNA extraction protocol for molecular breeding programs. Plant Mol Biol Rep 21:459a–459h

    Google Scholar 

  • Matsuoka Y, Mitchell SE, Kresovich S, Goodman M, Doebly J (2002) Microsatellites in Zea; variability, patterns of mutations, and use for evolutionary studies. Theor Appl Genet 104:436–450

    Article  CAS  PubMed  Google Scholar 

  • Miller MP (1997) Tools for population genetic analyses (tfpga) version 13: a windows program for the analysis of allozyme and population genetic data. Program distributed by the author over the internet from http://biowebusuedu/mpmbio/tfpgaasp

  • Mitchell SE, Kresovich S, Jester CA, Javier Hernandez C, Szewc-McFadden AK (1997) Application of multiplex PCR and fluorescence-based, semi automated allele sizing technology for genotyping plant genetic resources. Crop Sci 37:617–624

    CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    Google Scholar 

  • Ohta T, Kimura M (1973) A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res 22:201–204

    PubMed  Google Scholar 

  • de Oliveira AC, Richter T, Bennetzen JL (1996) Regional and racial specificities in sorghum germplasm assessed with DNA markers. Genome 39:579–587

    PubMed  Google Scholar 

  • Ollitrault P, Arnaud M, Chantereau J (1989) Enzyme polymorphism in sorghums II Genetic and evolutionary constitution of cultivated sorghum. Agron Trop 44:211–222

    Google Scholar 

  • Peng Y, Schertz KF, Cartinhour S, Hart GE (1999) Comparative genome mapping of Sorghum bicolor (L.) Moench using an RFLP map constructed in a population of recombinant inbred lines. Plant Breed 118:225–235

    Article  CAS  Google Scholar 

  • Purseglove JW (1985) Tropical crops: monocotyledons. Longman, London

    Google Scholar 

  • Röder MS, Plaschke J, König SU, Börner A, Sorrells ME, Tanksley SD, Ganal MW (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol Genet Gen 246:327–333

    Article  Google Scholar 

  • Rogers JS (1972) Measures of genetic similarity and genetic distance. Stud Genet VII Univ Tex Publ 7213:145–153

    Google Scholar 

  • Rohlf (2001) ntsyspc, ver. 210t. Applied Biostatistics. SSPS, Chicago, Ill.

    Google Scholar 

  • Schloss SJ, Mitchell SE, White GM, Kukatla R, Bowers JE, Paterson AH, Kresovich S (2002) Characterization of RFLP clone sequences for gene discovery and SSR development in Sorghum bicolor (L). Moench. Theor Appl Genet 105:912–920

    Article  CAS  PubMed  Google Scholar 

  • Schug MD, Hutter CM, Wetterstrand KA, Gaudette MS, Mackay TFC, Aquadro CF (1998) The mutation rates of di-, tri- and tetra-nucleotide repeats in Drosophila melanogaster. Mol Biol Evol 15:1751–1760

    CAS  PubMed  Google Scholar 

  • Smith JR, Carpten JD, Brownstein MJ, Ghosh S, Magnuson VL, Gilbert DA, Trent JM, Collins FS (1995) Approach to genotyping errors caused by non-templated nucleotide addition by Taq DNA polymerase. Genome Res 5:312–317

    CAS  PubMed  Google Scholar 

  • Smith JSC, Kresovich S, Hopkins MS, Mitchell SE, Dean RE, Woodman WL, Lee M, Porter K (2000) Genetic diversity among elite sorghum inbred lines assessed with simple sequence repeats. Crop Sci 40:226–232

    CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, New York

    Google Scholar 

  • Snowden JD (1936) The cultivated races of sorghum. Adlard, UK

    Google Scholar 

  • Taramino G, Tarchini R, Ferrario S, Lee M, Pé ME (1997) Characterization and mapping of simple sequence repeats (SSRs) in Sorghum bicolour. Theor Appl Genet 95:66–72

    Article  CAS  Google Scholar 

  • Uptmoor R, Wenzel W, Friedt W, Donaldson G, Ayisi K, Ordon F (2003) Comparative analysis on the genetic relatedness of Sorghum bicolor accessions from Southern Africa by RAPDs, AFLPs and SSRs. Theor Appl Genet 106:1316–1325

    CAS  PubMed  Google Scholar 

  • de Vries J, Toenniessen G (2001) Securing the harvest: biotechnology, breeding and seed systems for African crops. CABI Publ, Wallingford

    Google Scholar 

  • de Wet JMJ, Harlan JR, Kurmarohita B (1972) Origin and evolution of Guinea sorghums. East Afr Agric For J 114–119

Download references

Acknowledgements

We dedicate this manuscript to Dr. Hartwig H. Geiger, Professor of Population Genetics at the University of Hohenheim, Stuttgart, Germany, for his lifelong contribution to cereal breeding. We wish to thank Dr. Cecile Grenier for creating the Guinea-race Core Collection and Dr. Jacques Chantereau for assistance with the Snowden classification. This research was financed using a Core contribution from ICRISAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf T. Folkertsma.

Additional information

Communicated by H.C. Becker

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folkertsma, R.T., Rattunde, H.F.W., Chandra, S. et al. The pattern of genetic diversity of Guinea-race Sorghum bicolor (L.) Moench landraces as revealed with SSR markers. Theor Appl Genet 111, 399–409 (2005). https://doi.org/10.1007/s00122-005-1949-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-1949-0

Keywords

Navigation