Skip to main content
Log in

Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Groundnut rosette disease is the most destructive viral disease of peanut in Africa and can cause serious yield losses under favourable conditions. The development of disease-resistant cultivars is the most effective control strategy. Resistance to the aphid vector, Aphis craccivora, was identified in the breeding line ICG 12991 and is controlled by a single recessive gene. Bulked segregant analysis (BSA) and amplified fragment length polymorphism (AFLP) analysis were employed to identify DNA markers linked to aphid resistance and for the development of a partial genetic linkage map. A F2:3 population was developed from a cross using the aphid-resistant parent ICG 12991. Genotyping was carried out in the F2 generation and phenotyping in the F3 generation. Results were used to assign individual F2 lines as homozygous-resistant, homozygous-susceptible or segregating. A total of 308 AFLP (20 EcoRI+3/MseI+3, 144 MluI+3/MseI+3 and 144 PstI+3/MseI+3) primer combinations were used to identify markers associated with aphid resistance in the F2:3 population. Twenty putative markers were identified, of which 12 mapped to five linkage groups covering a map distance of 139.4 cM. A single recessive gene was mapped on linkage group 1, 3.9 cM from a marker originating from the susceptible parent, that explained 76.1% of the phenotypic variation for aphid resistance. This study represents the first report on the identification of molecular markers closely linked to aphid resistance to groundnut rosette disease and the construction of the first partial genetic linkage map for cultivated peanut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Batley J, Mogg R, Edwards D, O’Sullivan H, Edwards KJ (2003) A high-throughput SNuPE assay for genotyping SNPs in the flanking regions of Zea mays sequence tagged simple sequence repeats. Mol Breed 11:111–120

    Article  CAS  Google Scholar 

  • Bock K, Murant A, Rajeshwari R (1990) The nature of the resistance in groundnut to rosette disease. Ann Appl Biol 117:379–384

    Google Scholar 

  • Burow MD, Simpson CE, Paterson AH, Starr JL (1996) Identification of peanut (Arachis hypogaea L.) RAPD markers diagnostic of root-knot nematode (Meloidogyne arenaria (Neal) Chitwood) resistance. Mol Breed 2:369–379

    CAS  Google Scholar 

  • Burow MD, Simpson CE, Starr JL, Paterson AH (1999) Generation of a molecular map of the cultivated peanut, Arachis hypogaeaL. In: Plant Anim Genome VII Conf. San Diego, p 235

  • Casper R, Meyer S, Lesemann D-E, Reddy DVR, Rajeshwari R, Misari SM, Subbarayudu SS (1983) Detection of a luteovirus in groundnut rosette diseased groundnuts (Arachis hypogaea) by enzyme-linked immunosorbent assay and immunoelectron microscopy. Phytopathol Z 108:12–17

    Google Scholar 

  • Cherry JP (1977) Potential sources of peanut seed proteins and oil in the genus Arachis. J Agric Food Chem 25:186–193

    CAS  Google Scholar 

  • Chiyembekeza AJ, Subrahmanyam P, Hildebrand GL (1997) Identification and farm evaluation of rosette-resistant groundnut genotypes in Malawi. In: Reddy DVR, Delfosse P, Lenne’ JM, Subrahmanyam P (eds) Groundnut virus diseases in Africa: summary and recommendations. Sixth meeting of the international working group, Agricultural Research Council, Plant Protection Research Institute, Pretoria, South Africa. International Crops Research Institute for the Semi-Arid Tropics, Andhra Pradesh, India and Belgian Administration for Development Co-operation, Belgium, pp 20–21

    Google Scholar 

  • Coffelt TA, Hammons RO (1973) Influence of sizing peanut seed on two phenotypic ratios. J Hered 64:39–42

    Google Scholar 

  • de Berchoux C (1960) La rosette de l’arachide en Haute-Volta. Comportement des lignées résistantes. Oléagineux 15:229–233

    Google Scholar 

  • Ferguson ME, Burow MD, Schulze SR, Bramel PJ, Paterson AH, Kresovich S, Mitchell S (2004) Microsatellite identification and characterization in peanut (A. hypogaea L.) Theor Appl Genet 108:1064–1070

    Article  CAS  PubMed  Google Scholar 

  • Garcia GM, Stalker HT, Shroeder E, Kochert GA (1996) Identification of RAPD, SCAR and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenassi to A. hypogaea. Genome 39:836–845

    CAS  PubMed  Google Scholar 

  • Grieshammer U, Wynne JC (1990) Isozyme variability in mature seeds of U.S. peanut cultivars and collections. Peanut Sci 18:72–75

    Google Scholar 

  • Haley SD, Afanador L, Kelly JD (1994) Selection for monogenic pest resistance traits with coupling- and repulsion-phase RAPD markers. Crop Sci 34:1061–1066

    Google Scholar 

  • Halward TM, Stalker HT, LaRue EA, Kochert G (1991) Genetic variation detectable with molecular markers among unadapted germplasm resources of cultivated peanut and related wild species. Genome 34:1013–1020

    CAS  Google Scholar 

  • Halward T, Stalker HT, Kochert G (1994) RFLP map of peanut. In: Phillips RL, Vasil IK (eds) DNA-based markers in plants. Kluwer, Dordrecht, pp 246–260

    Google Scholar 

  • Hayashi K, Hashimoto N, Diagen M, Ashikawa I (2004) Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theor Appl Genet 108:1212–1220

    CAS  PubMed  Google Scholar 

  • He G, Prakash CS (1997) Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica 97:143–149

    Article  CAS  Google Scholar 

  • Herselman L (2003) Genetic variation among Southern African cultivated peanut (Arachis hypogaea L.) genotypes as revealed by AFLP analysis. Euphytica 133:319–327

    Article  CAS  Google Scholar 

  • Hopkins MS, Casa AM, Wang T, Mitchell SE, Dean RE, Kochert GD, Kresovich S (1999) Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci 39:1243–1247

    CAS  Google Scholar 

  • Hull R, Adams AN (1968) Groundnut disease and its assistor virus. Ann Appl Biol 62:139–145

    Google Scholar 

  • ICRISAT (1982) Annual report. Patancheru, India

  • Isleib TG, Wynne JC (1992) Use of plant introductions in peanut improvement. In: Shands HL, Weisner LE (eds) Use of plant introductions in cultivar development, part 2. Crop Science Society of America, Madison, pp 75–116

    Google Scholar 

  • Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565–570

    CAS  Google Scholar 

  • Lacks GD, Stalker HT (1993) Isozyme analysis of Arachis species and interspecific hybrids. Peanut Sci 20:76–81

    CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  PubMed  Google Scholar 

  • Lincoln S, Daly MJ, Lander E (1992) Constructing genetic linkage maps with mapmaker/exp 3.0. Whitehead Institute technical report, 3rd edn. Cambridge, Mass.

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulk segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:745–749

    PubMed  Google Scholar 

  • Minja EM, van der Merwe PJA, Kimmins FM, Subrahmanyam P (1999) Screening groundnut breeding lines for resistance to aphids, Aphid craccivora Koch. Int Arachis Newsl 19:21–23

    Google Scholar 

  • Murant AF, Kumar IK (1990) Different variants of the satellite RNA of groundnut rosette virus are responsible for the chlorotic and green forms of groundnut rosette disease. Ann Appl Biol 117:85–92

    CAS  Google Scholar 

  • Murant AF, Rajeshwari R, Robinson DJ, Raschke JH (1988) A satellite RNA of groundnut rosette virus that is largely responsible for symptoms of groundnut rosette disease. J Gen Virol 69:1479–1486

    CAS  Google Scholar 

  • Murthy TGK, Tiwari SP, Reddy PS (1988) A linkage group for genes governing pod characters in peanut. Euphytica 39:43–46

    Google Scholar 

  • Naidu RA, Kimmins FM, Deom CM, Subrahmanyam P, Chiyembekeza AJ, van der Merwe PJA (1999) Groundnut rosette. A virus disease affecting groundnut production in sub-Saharan Africa. Plant Dis 83:700–709

    Google Scholar 

  • Padgham DE, Kimmins FM, Ranga Rao GV (1990) Resistance in groundnut (Arachis hypogaea L.) to Aphis craccivora (Koch). Ann Appl Biol 117:285–294

    Google Scholar 

  • Patel JS, John CM, Seshadri CR (1936) The inheritance of characters in the groundnut. Proc Indian Acad Sci 3:214–233

    Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    Article  CAS  PubMed  Google Scholar 

  • Reddy DVR, Murant AF, Duncan GH, Ansa OA, Demski JW, Kuhn CW (1985) Viruses associated with chlorotic rosette and green rosette disease in groundnut in Nigeria. Ann Appl Biol 107:57–64

    Google Scholar 

  • Saghai Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    PubMed  Google Scholar 

  • Sauger L, Catherinet M (1954a) La rosette chlorotique de l’arachide et les lignées selectionnées. Agron Trop 9:28–36

    Google Scholar 

  • Sauger L, Catherinet M (1954b) Nouvelles observations sur la rosette chlorotique de l’arachide et les lignées selectionnées. Bull Agron Ministere Fr Outremer 11:204–216

    Google Scholar 

  • Savage GP, Keenan JI (1994) The composition and nutritive value of groundnut kernels. In: Smartt J (ed) The groundnut crop: a scientific basis for improvement. Chapman and Hall, London, pp 173–213

    Google Scholar 

  • Smartt J (1994) The groundnut farming systems and the rural economy—a global view. In: Smartt J (ed) The groundnut crop: a scientific basis for improvement. Chapman and Hall, London, pp 664–699

    Google Scholar 

  • Stalker HT (1991) A morphological appraisal of wild species in section Arachis of peanuts. Peanut Sci 17:117–122

    Google Scholar 

  • Stalker HT, Mozingo LG (2001) Molecular markers of Arachis and marker-assisted selection. Peanut Sci 28:117–123

    CAS  Google Scholar 

  • Storey HH, Ryland AK (1955) Transmission of groundnut rosette virus. Ann Appl Biol 43:423–432

    Google Scholar 

  • Subramanian V, Gurtu S, Nageswara Rae RC, Nigam SN (2000) Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43:656–660

    Article  CAS  PubMed  Google Scholar 

  • Van der Merwe PJA (2001) Project groundnut rosette disease management. Progress report: July 2000 to June 2001. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in partnership with Natural Resources Institute (NRI) and Serere Agricultural and Animal Research Institute (SAARI) funded by Department For International Development (DFID)

    Google Scholar 

  • van der Merwe PJA, Subrahmanyan P, Kimmins FM, Willekens J (2001) Mechanisms of resistance to groundnut rosette. Int Arachis Newsl 21:43–46

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 21:4407–4414

    Google Scholar 

  • Vuylsteke M, Mank R, Antonise R, Bastiaans E, Senior ML, Stuber CW, Melchinger AE, Lübberstedt T, Xia XC, Stam P, Zabeau M, Kuiper M (1999) Two high-density AFLP linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 99:921–935

    Article  CAS  Google Scholar 

  • Yayock JY, Rossel HW, Harkness C (1976) A review of the 1975 groundnut rosette epidemic in Nigeria. In: Institute of Agricultural Research (ed) Samaru Conf Paper No.9. Institute of Agricultural Research, Samaru

    Google Scholar 

  • Young WP, Schupp JM, Keim P (1999) DNA methylation and AFLP marker distribution in the soybean genome. Theor Appl Genet 99:785–792

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This publication is an output from a research project funded by the Department for International Development of the United Kingdom. However, the Department for International Development can accept no responsibility for any information provided or views expressed (DFID project code R7445, Crop Protection Programme).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Herselman.

Additional information

Communicated by C. Möllers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herselman, L., Thwaites, R., Kimmins, F.M. et al. Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theor Appl Genet 109, 1426–1433 (2004). https://doi.org/10.1007/s00122-004-1756-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1756-z

Keywords

Navigation