Skip to main content
Log in

Molekulares Tumorboard Prostatakarzinom

Molecular tumor board prostate cancer

  • Leitthema
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

In der modernen Onkologie ist das molekulare Tumorboard die Schnittstelle zwischen Klinik und Grundlagenforschung. Durch die interdisziplinäre Zusammenarbeit von Experten verschiedener Fachdisziplinen soll die Indikation zur molekularbiologischen Tumoranalysen sinnvoll gestellt, die Untersuchungsergebnisse korrekt interpretiert und hierauf basierende personalisierte Therapieempfehlungen ausgegeben werden. Bezogen auf das metastasierte Prostatakarzinom können hiervon insbesondere Patienten mit familiärem Prostatakarzinom, jungen Manifestationsalter oder nach Ausschöpfung von zugelassenen Standardtherapien profitieren. Mit der Androgenrezeptor-Splicevariante 7 (AR-V7) steht ein prädiktiver Marker für das Ansprechen auf eine Hormontherapie mit Abirateron oder Enzalutamid zur Verfügung. Testverfahren zur Bestimmung des AR-V7-Status im Blut sind bereits kommerziell erwerblich. Mutationen in den DNA-Reparaturmechanismen stellen einen weiteren Ansatzpunkt für zielgerichtete, personalisierte Therapien dar. Defekte in der homologen Rekombination erhöhen die Empfindlichkeit von Tumorzellen gegenüber Poly(ADP-Ribose)-Polymerase-(PARP-)Inhibitoren wie Olaparib. In der TOPARP-A-Studie, eine Phase-II-Studie, lag die Ansprechrate bei Patienten mit metastasiertem Prostatakarzinom und Mutationen in DNA-Reparaturgenen bei 88 %. Mikrosatelliteninstabilität ist die Folge von Defekten in der DNA-Mismatch-Reparatur. Mit dem Immun-Checkpoint-Inhibitor Pembrolizumab steht auch für diese Patientenkollektiv eine wirksame Therapie zur Verfügung. Da weder PARP-Inhibitoren noch Pembrolizumab aktuell zur Therapie des metastasierten Prostatakarzinoms in Deutschland zugelassen sind, stärkt die Empfehlung eines molekularen Tumorboards die Erfolgsaussichten für die Genehmigung eines individuellen Heilversuches durch die Krankenkassen.

Abstract

In modern oncology, molecular tumor boards are the interface between the public healthcare system and clinical research institutions. An interdisciplinary team of medical and scientific experts assesses if extensive molecular testing for tumor profiling is appropriate and discusses therapeutic options for patients with newly diagnosed treatable alterations. In the field of metastatic prostate cancer, patients especially with a strong family history, young age of diagnosis and those who have exhausted standard treatments may benefit from molecular profiling. Expression of the androgen receptor splice variant 7 (AR-V7) predicts nonresponse to next-generation AR-directed therapy like abiraterone or enzalutamide. Different blood tests for AR-V7 detection are now commercially available. Mutations in the DNA repair pathway are another frequent event in metastatic prostate cancer. Homologous recombination defects sensitize cancer cells to poly(ADP-ribose) polymerase (PARP) inhibitors. In the TOPARP-A trial, the PARP inhibitor olaparib led to high response rates (88%) in patients with mutated DNA repair genes. Furthermore, patients with DNA mismatch repair deficiency and/or microsatellite instability seem to benefit from PD-1 inhibitors, particularly pembrolizumab. At this time neither PARP inhibitors nor PD-1 inhibitors are approved for metastatic prostate cancer treatment in Germany. Therefore, a recommendation of a molecular tumor board for biomarker-matched off-label use of approved drugs across entity barriers will support coverage by health insurance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Antonarakis ES, Lu C, Wang H et al (2014) AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 371:1028–1038

    Article  Google Scholar 

  2. Watson PA, Arora VK, Sawyers CL (2015) Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer 15:701–711

    Article  CAS  Google Scholar 

  3. Antonarakis ES, Lu C, Luber B et al (2015) Androgen Receptor Splice Variant 7 and Efficacy of Taxane Chemotherapy in Patients With Metastatic Castration-Resistant Prostate Cancer. Jama Oncol 1:582–591

    Article  Google Scholar 

  4. Onstenk W, Sieuwerts AM, Kraan J et al (2015) Efficacy of Cabazitaxel in Castration-resistant Prostate Cancer Is Independent of the Presence of AR-V7 in Circulating Tumor Cells. Eur Urol 68:939–945

    Article  CAS  Google Scholar 

  5. Bernemann C, Schnoeller TJ, Luedeke M et al (2017) Expression of AR-V7 in Circulating Tumour Cells Does Not Preclude Response to Next Generation Androgen Deprivation Therapy in Patients with Castration Resistant Prostate Cancer. Eur Urol 71:1–3

    Article  CAS  Google Scholar 

  6. Steinestel J, Luedeke M, Arndt A et al (2015) Detecting predictive androgen receptor modifications in circulating prostate cancer cells. Oncotarget. https://doi.org/10.18632/oncotarget.3925

    Article  PubMed  PubMed Central  Google Scholar 

  7. Antonarakis ES, Lu C, Luber B et al (2017) Clinical Significance of Androgen Receptor Splice Variant-7 mRNA Detection in Circulating Tumor Cells of Men With Metastatic Castration-Resistant Prostate Cancer Treated With First- and Second-Line Abiraterone and Enzalutamide. J Clin Oncol 35:2149–2156

    Article  CAS  Google Scholar 

  8. Scher HI, Graf RP, Schreiber NA et al (2016) Nuclear-specific AR-V7 Protein Localization is Necessary to Guide Treatment Selection in Metastatic Castration-resistant Prostate Cancer. Eur Urol 71:874–882

    Article  Google Scholar 

  9. Armstrong AJ, Halabi s, Luo j et al (2018) The PROPHECY trial: Multicenter prospective trial of circulating tumor cell (CTC) AR-V7 detection in men with mCRPC receiving abiraterone (A) or enzalutamide (E). J Clinic Oncol 36:5004–5004

    Google Scholar 

  10. Joosse SA, Pantel K (2015) Tumor-Educated Platelets as Liquid Biopsy in Cancer Patients. Cancer Cell 28:552–554

    Article  CAS  Google Scholar 

  11. Seitz AK, Thoene S, Bietenbeck A et al (2017) AR-V7 in Peripheral Whole Blood of Patients with Castration-resistant Prostate Cancer: Association with Treatment-specific Outcome Under Abiraterone and Enzalutamide. Eur Urol 72:828–834

    Article  CAS  Google Scholar 

  12. Pritchard CC, Mateo J, Walsh MF et al (2016) Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N Engl J Med 375:443–453

    Article  CAS  Google Scholar 

  13. Robinson D, Van Allen EM, Wu YM et al (2015) Integrative Clinical Genomics of Advanced Prostate Cancer. Cell 162:454

    Article  CAS  Google Scholar 

  14. Carroll PH, Mohler JL (2018) NCCN Guidelines Updates: Prostate Cancer and Prostate Cancer Early Detection. J Natl Compr Canc Netw 16:620–623

    Article  Google Scholar 

  15. Cheng HH (2018) The resounding effect of DNA repair deficiency in prostate cancer. Urol Oncol 36:385–388

    Article  CAS  Google Scholar 

  16. Nicolosi P, Ledet E, Yang S et al (2019) Prevalence of Germline Variants in Prostate Cancer and Implications for Current Genetic Testing Guidelines. Jama Oncol. https://doi.org/10.1001/jamaoncol.2018.6760

    Article  PubMed  PubMed Central  Google Scholar 

  17. Castro E, Goh C, Leongamornlert D et al (2015) Effect of BRCA Mutations on Metastatic Relapse and Cause-specific Survival After Radical Treatment for Localised Prostate Cancer. Eur Urol 68:186–193

    Article  CAS  Google Scholar 

  18. Castro E, Goh C, Olmos D et al (2013) Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 31:1748–1757

    Article  CAS  Google Scholar 

  19. Farmer H, McCabe N, Lord CJ et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    Article  CAS  Google Scholar 

  20. Lord CJ, Ashworth A (2017) PARP inhibitors: Synthetic lethality in the clinic. Science 355:1152–1158

    Article  CAS  Google Scholar 

  21. Iglehart JD, Silver DP (2009) Synthetic lethality—a new direction in cancer-drug development. N Engl J Med 361:189–191

    Article  CAS  Google Scholar 

  22. Fong PC, Boss DS, Yap TA et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361:123–134

    Article  CAS  Google Scholar 

  23. Mateo J, Carreira S, Sandhu S et al (2015) DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. N Engl J Med 373:1697–1708

    Article  CAS  Google Scholar 

  24. Clarke N, Wiechno P, Alekseev B et al (2018) Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol 19:975–986

    Article  CAS  Google Scholar 

  25. Klapacz J, Lingaraju GM, Guo HH et al (2010) Frameshift mutagenesis and microsatellite instability induced by human alkyladenine DNA glycosylase. Mol Cell 37:843–853

    Article  CAS  Google Scholar 

  26. Dominguez-Valentin M, Joost P, Therkildsen C et al (2016) Frequent mismatch-repair defects link prostate cancer to Lynch syndrome. Bmc Urol 16:15

    Article  Google Scholar 

  27. Raymond VM, Mukherjee B, Wang F et al (2013) Elevated risk of prostate cancer among men with Lynch syndrome. J Clin Oncol 31:1713–1718

    Article  Google Scholar 

  28. Guedes LB, Antonarakis ES, Schweizer MT et al (2017) MSH2 Loss in Primary Prostate Cancer. Clin Cancer Res 23:6863–6874

    Article  CAS  Google Scholar 

  29. Wilczak W, Rashed S, Hube-Magg C et al (2017) Up-regulation of mismatch repair genes MSH6, PMS2 and MLH1 parallels development of genetic instability and is linked to tumor aggressiveness and early PSA recurrence in prostate cancer. Carcinogenesis 38:19–12

    Article  CAS  Google Scholar 

  30. Le DT, Durham JN, Smith KN et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:409–413

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Seitz.

Ethics declarations

Interessenkonflikt

A.K. Seitz, M.M. Heck, M.W. Kamer und C. Grüllich geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seitz, A.K., Heck, M.M., Kamer, M.W. et al. Molekulares Tumorboard Prostatakarzinom. Urologe 58, 752–759 (2019). https://doi.org/10.1007/s00120-019-0933-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-019-0933-2

Schlüsselwörter

Keywords

Navigation