Skip to main content
Log in

Femoroazetabuläres Impingement – Update 2019

Femoroacetabular impingement – Update 2019

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Seit Beschreibung des femoroazetabulären Impingements (FAI) hat sich dessen radiologische Diagnostik ständig weiterentwickelt.

Ziel der Arbeit

Das biomechanische Konzept des FAI wird erläutert und es werden aktuelle Möglichkeiten radiologischer Verfahren bei der Diagnostik dargestellt.

Material und Methoden

Basierend auf einer Literaturrecherche wird der aktuelle Wissensstand, insbesondere zur radiologischen Diagnostik des FAI, in einem Review zusammengefasst. Darüber hinaus wird ein Ausblick auf neue Methoden gegeben.

Ergebnisse

Das FAI beschreibt ein dynamisches Phänomen mit einem mechanischen Konflikt zwischen dem Femurkopf und/oder -hals und dem Azetabulum. Während die Verdachtsdiagnose des FAI klinisch gestellt wird, ist die bildgebende Diagnostik für die Diagnosesicherung und zur Abklärung der zugrundeliegenden Deformitäten des proximalen Femurs (Cam-Deformität) bzw. des Azetabulums (Pincer-Deformität) sowie assoziierter Schäden des Gelenkknorpels und des Labrum unverzichtbar. Basis bildgebender Diagnostik sind a.-p.- und laterale Röntgenaufnahmen. MRT und MR-Arthrographie sind die bevorzugten Verfahren zur detaillierten Analyse von Deformitäten sowie der Detektion und Graduierung von Schäden an Gelenkknorpel (Sensitivität: 58–91 %) und Labrum (Sensitivität: 50–92 %). Gleichzeitig lassen sich mit ihnen andere Hüfterkrankungen ausschließen. Aktueller Stand und neue Entwicklungen der Bildgebung werden aufgezeigt.

Schlussfolgerung

Für die Diagnose des FAI bedarf es typischer klinischer und bildgebender Befunde. Die radiologische Diagnostik ist unverzichtbarer Bestandteil der Diagnosesicherung, der Differenzierung zugrundeliegender Deformitäten und der Beurteilung therapierelevanter Gelenkschäden.

Abstract

Background

Since the first description of the femoroacetabular impingement (FAI) concept diagnostic imaging of FAI has continuously been developed.

Objective

The biomechanical concept is explained and an update on diagnostic imaging of FAI is presented.

Material and methods

Based on a literature search this review article presents the current state of knowledge about FAI mechanisms and gives an overview on state of the art radiological diagnostics. A perspective on new imaging methods is also given.

Results

The FAI is a dynamic phenomenon with a mechanical conflict between the femoral head and/or neck and the acetabulum. It is usually suspected clinically; however, imaging plays an essential role in establishing the diagnosis by detecting and defining the underlying deformities of the proximal femur (cam deformity) and the acetabulum (pincer deformity) and by evaluating associated lesions of the articular cartilage and labrum. Basic imaging diagnostics consist of anteroposterior and lateral radiographs. Magnetic resonance imaging (MRI) and MR arthrography are the preferred imaging modalities for detailed analysis of deformities, for the detection and graduation of lesions of articular cartilage (sensitivity 58–91%) and labral lesions (sensitivity 50–92%). Simultaneously, these methods can exclude other hip diseases. Current standards and new developments in FAI imaging are presented.

Conclusion

For the diagnosis of FAI typical clinical and imaging findings are required. Radiological diagnostics are an indispensable component in establishing the diagnosis of FAI, in the differentiation of the underlying deformities and in the assessment of treatment-relevant joint damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12
Abb. 13
Abb. 14

Literatur

  1. Agten CA, Jonczy M, Ullrich O, Pfirrmann CWA, Sutter R, Buck FM (2017) Measurement of acetabular version based on biplanar radiographs with 3D reconstructions in comparison to CT as reference standard in cadavers. Clin Anat 30(05):591–598

    Article  Google Scholar 

  2. Beck M, Kalhor M, Leunig M, Ganz R (2005) Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br 87(7):1012–1018

    Article  CAS  Google Scholar 

  3. Brunner A, Horisberger M, Herzog RF (2009) Evaluation of a computed tomography-based navigation system prototype for hip arthroscopy in the treatment of femoroacetabular cam impingement. Arthroscopy 25:382–391

    Article  Google Scholar 

  4. Czerny C, Hofmann S, Neuhold A, Tschauner C, Engel A, Recht MP, Kramer J (1996) Lesions of the acetabular labrum: accuracy of MR imaging and MR arthrography in detection and staging. Radiology 200:225–230

    Article  CAS  Google Scholar 

  5. Ehrmann C, Rosskopf AB, Pfirrmann CW, Sutter R (2015) Beyond the alpha angle: alternative measurements for quantifying cam-type deformities in femoroacetabular impingement. J Magn Reson Imaging 42:1024–1031

    Article  Google Scholar 

  6. Eijeer H, Leunig M, Mahomed MN, Ganz R (2001) Anterior femoral head-neck offset: a method for measurement. Hip Int 11:37–41

    Article  Google Scholar 

  7. Ganz R, Parvizi J, Beck M, Leunig M, Nötzli H, Siebenrock KA (2003) Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res 417:112–120

    Google Scholar 

  8. Hesper T, Neugroda C, Schleich C et al (2018) T2*-mapping of Acetabular cartilage in patients with Femoroacetabular impingement at 3 T: comparative analysis with arthroscopic findings. Cartilage 9:118–126

    Article  Google Scholar 

  9. Ito K, Minka MA II, Leunig M, Werlen S, Ganz R (2001) Femoroacetabular impingement and the cam-effect. A MRI-based quantitative anatomical study of the femoral head-neck offset. J Bone Joint Surg Br 83(02):171–176

    Article  CAS  Google Scholar 

  10. Klenke FM, Hoffmann DB, Cross BJ (2015) Validation of a standard mapping system oft he hip joint for radial MR sequencing. Skeletal Radiol 44:339–343

    Article  Google Scholar 

  11. Kusma M, Bachelier F, Schneider G, Dienst M (2009) Femoroazetabuläres Impingement. Klinische und radiologische Diagnostik. Orthopade 38:402–411

    Article  CAS  Google Scholar 

  12. Lerch TD, Todorski IA, Schmaranzer F et al (2017) More than half of the 
patients with hip pain due to FAI present an abnormal femoral torsion [ECR online, B‑1165. Insights Imaging. https://doi.org/10.1007/s13244-017-0546-5

    Article  Google Scholar 

  13. Liechti EF, Ferguson SJ, Tannast M (2015) Protrusio acetabuli: joint loading with severe pincer impingement and ist theoretical implications for surgical therapy. J Orthop Res 33:106–113

    Article  Google Scholar 

  14. Lohan DG, Seeger LL, Motamedi K, Hame S, Sayre J (2009) Cam-type femoral-acetabular impingement: is the alpha angle the best MR arthrography has to offer? Skeletal Radiol 38(09):855–862

    Article  Google Scholar 

  15. McCarthy J, Noble P, Aluisio FV, Schuck M, Wright J, Lee JA (2003) Anatomy, pathologic features, and treatment of acetabular labral tears. Clin Orthop Relat Res 406:38–47

    Article  Google Scholar 

  16. McDonald SJ, Garbuz D, Ganz R (1997) Clinical evaluation of the symptomatic young adult hip. Semin Arthroplasty 8:3–9

    Google Scholar 

  17. Magee T (2015) Comparison of 3.0-T MR vs 3.0-T MR arthrography of the hip for detection of acetabular labral tears and chondral defects in the same patient population. Br J Radiol 88(1053):20140817

    Article  CAS  Google Scholar 

  18. Meyer DC, Beck M, Ellis T et al (2006) Comparison of six radiographic projections to assess femoral head/neck asphericity. Clin Orthop Relat Res 445:181–185

    PubMed  Google Scholar 

  19. Moreno N, Marín-Peña Ó (2012) Clinical scores in femoroacetabular impingement. In: Marín-Peña Ó (Hrsg) Femoroacetabular impingement. Springer, Berlin

    Google Scholar 

  20. Nepple JJ, Vigdorchik JM, Clohisy JC (2015) What is the association between sports participation and the development of proximal femoral cam deformity? A systematic review and meta-analysis. Am J Sports Med 43:2833–2840

    Article  Google Scholar 

  21. Nouh MR, Schweitzer ME, Rybak L, Cohen J (2008) Femoroacetabular impingement: can the alpha angle be estimated? AJR Am J Roentgenol 190:1260–1262

    Article  Google Scholar 

  22. Nozaki T, Kaneko Y, Yu HJ et al (2016) T1rho mapping of entire femoral cartilage using depth- and angle-dependent analysis. Eur Radiol 26:1952–1962

    Article  Google Scholar 

  23. Nötzli HP, Wyss TF, Stoecklin CH, Schmid MR, Treiber K, Hodler J (2002) The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg Br 84(04):556–560

    Article  Google Scholar 

  24. Oei EH, van Tiel J, Robinson WH et al (2014) Quantitative radiologic imaging techniques for articular cartilage composition: toward early diagnosis and development of disease-modifying therapeutics for osteoarthritis. Arthritis Care Res (Hoboken) 66:1129–1141

    Article  Google Scholar 

  25. Palmer A, Fernquest S, Rombach I et al (2017) Diagnostic and prognostic value of delayed gadolinium enhanced magnetic resonance imaging of cartilage (dGEMRIC) in early osteoarthritis of the hip. Osteoarthritis Cartilage 25:1468–1477

    Article  CAS  Google Scholar 

  26. Palmer WE (2010) Femoroacetabular impingement: caution is warranted in making imaging-based assumptions and diagnoses. Radiology 257(01):4–7

    Article  Google Scholar 

  27. Petchpraba TN, Dunham KS, Lattanzi R, Recht MP (2013) Demystifying radial imaging oft he hip. Radiographics 33:E97

    Article  Google Scholar 

  28. Pfirrmann CW, Meningiardi B, Dora C, Kalberer F, Zanetti M, Hodler J (2006) Cam and pincer femoroacetabular impingement: characteristic MR arthrographic findings in 50 patients. Radiology 240:778–785

    Article  Google Scholar 

  29. Pfirrmann CW, Duc SR, Zanetti M et al (2008) MR arthrography of acetabular cartilage delamination in femoroacetabular cam impingement. Radiology 249:236–241

    Article  Google Scholar 

  30. Rakhra KS, Sheikh AM, Allen D, Beaulé PE (2009) Comparison of MRI alpha anglemeasurement planes in femoroacetabular impingement. Clin Orthop Relat Res 467:660–665

    Article  Google Scholar 

  31. Rubin DA (2013) Femoroacetabular impingement: fact, fiction, or fantasy? AJR Am J Roentgenol 201(03):526–534

    Article  Google Scholar 

  32. Schmaranzer F, Klauser A, Kogler M et al (2015) Diagnostic perform- ance of direct traction MR arthrography of the hip: detection of chondral and labral lesions with arthroscopic comparison. Eur Radiol 25:1721–1730

    Article  Google Scholar 

  33. Schmaranzer F, Kogler M (2016) Femoroacetabular impingement and associated collateral damages. In: Kramer J, Karantanas A (Hrsg) MRI of the hip. Breitenseher Publishers, Horn

    Google Scholar 

  34. Schmaranzer F, Todorski IA, Lerch TD, Schwab J, Cullmann-Bastian J, Tannast M (2017) Intra-articular Lesions-Imaging and Surgical Correlation. Semin Musculoskelet Radiol 21:487–506

    Article  Google Scholar 

  35. Sutter R, Dietrich TJ, Zingg PO, Pfirrmann CW (2012) Femoral antetorsion: comparing asymptomatic volunteers and patients with femoroacetabular impingement. Radiology 263(2):475–483

    Article  Google Scholar 

  36. Sutter R, Zubler V, Hoffmann A et al (2014) Hip MRI: how useful is intraarticular contrast material for evaluating surgically proven lesions of the labrum and articular cartilage? Ajr Am J Roentgenol 202(01):160–169

    Article  Google Scholar 

  37. Sutter R, Pfirrmann CW (2017) Update on femoroacetabular impingement: what is new, and how should we assess it ? Semin Musculoskelet Radiol 21:518–528

    Article  Google Scholar 

  38. Waldt S, Eiber M, Wörtler K (2011) Messverfahren und Klassifikationen in der muskuloskelettalen Radiologie. Thieme, Stuttgart

    Book  Google Scholar 

  39. Wang L, Wu Y, Chang G et al (2009) Rapid isotropic 3D-sodium MRI of the knee joint in vivo at 7T. J Magn Reson Imaging 30:606–614

    Article  Google Scholar 

  40. Wong TT, Lynch TS, Popkin CA, Kazam K (2018) Preoperative use of a 3D printed model for femoroacetabular impingement surgery and ist en planned osteoplasty. AJR Am J Roentgenol 211(2):W116–W121

    Article  Google Scholar 

  41. Wyles CC, Norambuena GA, Howe BM, Larson DR, Levy BA, Yuan BJ, Trousdale RT, Sierra RJ (2017) Cam deformities and limited hip range of motion are associated with early osteoarthritic changes in adolescent athletes: a prospective matched cohort study. Am J Sports Med 45:3036–3043

    Article  Google Scholar 

  42. Xia Y, Fripp J, Chandra SS et al (2013) Automated bone segmentation from large field of view 3D MR images of the hip joint. Phys Med Biol 58:7375–7390

    Article  Google Scholar 

  43. Yoshimoto K, Hamai S, Higaki H, Gondoh H, Nakashima Y (2017) Visualization of a cam-type femoroacetabular impingement while squatting using image-matching techniques: a case report. Skeletal Radiol 46:1277–1282

    Article  Google Scholar 

  44. Zilkens C, Tiderius CJ, Krauspe R et al (2015) Current knowledge and importance of dGEMRIC techniques in diagnosis of hip joint diseases. Skelet Radiol 44:1073–1083

    Article  Google Scholar 

Download references

Danksagung

Die Autoren danken Prof. Klaus Wörtler, PD Dr. Florian Schmaranzer und der Fa. Clinical Graphics für die Bereitstellung von Bildmaterial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Heuck.

Ethics declarations

Interessenkonflikt

A. Heuck, M. Dienst und C. Glaser geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heuck, A., Dienst, M. & Glaser, C. Femoroazetabuläres Impingement – Update 2019. Radiologe 59, 242–256 (2019). https://doi.org/10.1007/s00117-018-0486-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-018-0486-1

Schlüsselwörter

Keywords

Navigation