Hirnstimulation zur Behandlung schlaganfallbedingter motorischer Defizite

Brain stimulation for treating stroke-related motor deficits

Zusammenfassung

Die Funktionserholung schlaganfallbedingter Defizite wird wesentlich durch neuronale Reorganisationsprozesse bestimmt. Neurorehabilitative Ansätze zielen daher darauf ab, positive Prozesse zu unterstützen und maladaptive neuronale Vorgänge zu supprimieren. In diesem Übersichtsartikel resümieren wir die wesentlichen Befunde aus Studien zur nichtinvasiven und invasiven Hirnstimulation hinsichtlich eines Nutzens für die Behandlung motorischer Defizite nach einem Schlaganfall. Darüber hinaus diskutieren wir auch mögliche Ansatzpunkte, um neuromodulatorische Ansätze effektiver zu gestalten und damit das Outcome der Patienten zu verbessern.

Abstract

Functional recovery of stroke-related deficits is mainly achieved through neural reorganization. Neurorehabilitative approaches, therefore, aim at supporting positive processes while suppressing maladaptive neuronal processes. This review summarizes the main findings of studies using non-invasive and invasive brain stimulation with respect to the benefits of the treatment for motor deficits after stroke. In addition, the article discusses possible approaches to enhance the effectiveness of neuromodulatory approaches and thus improve the outcome of patients.

This is a preview of subscription content, access via your institution.

Literatur

  1. 1.

    Ackerley SJ, Byblow WD, Barber PA et al (2015) Primed physical therapy enhances recovery of upper limb function in chronic stroke patients. Neurorehabil Neural Repair 30:339–348

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Allman C, Amadi U, Winkler AM et al (2016) Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Sci Transl Med 8:330re1

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Avenanti A, Coccia M, Ladavas E et al (2012) Low-frequency rTMS promotes use-dependent motor plasticity in chronic stroke: a randomized trial. Neurology 78:256–264

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1:1106–1107

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Batsikadze G, Moliadze V, Paulus W et al (2013) Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol 591:1987–2000

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Bestmann S, Baudewig J, Siebner HR, Rothwell JC (2005) BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. Neuroimage 28:22–29

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32–48

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Brown JA, Lutsep H, Cramer SC, Weinand M (2003) Motor cortex stimulation for enhancement of recovery after stroke: case report. Neurol Res 25:815–818

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Brown JA, Lutsep HL, Weinand M, Cramer SC (2006) Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study. Neurosurgery 58:464–473

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Chang MC, Kim DY, Park DH (2015) Enhancement of cortical excitability and lower limb motor function in patients with stroke by transcranial direct current stimulation. Brain Stimul 8:561–566

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Delvaux V, Alagona G, Gérard P et al (2003) Post-stroke reorganization of hand motor area: a 1-year prospective follow-up with focal transcranial magnetic stimulation. Clin Neurophysiol 114:1217–1225

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Di Lazzaro V, Dileone M, Capone F et al (2014) Immediate and late modulation of interhemipheric imbalance with bilateral transcranial direct current stimulation in acute stroke. Brain Stimul 7:841–848

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Du J, Tian L, Liu W et al (2016) Effects of repetitive transcranial magnetic stimulation on motor recovery and motor cortex excitability in patients with stroke: a randomized controlled trial. Eur J Neurol 23:1666–1672

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Elsner B, Kugler J, Pohl M, Mehrholz J (2016) Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD009645.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Fink GR, Grefkes C, Weiss PH (2016) New hope for ameliorating stroke-induced deficits? Brain 139:1002–1004

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Forogh B, Ahadi T, Nazari M et al (2017) The effect of repetitive transcranial magnetic stimulation on postural stability after acute stroke: a clinical trial. Basic Clin Neurosci 8:405–411

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Fridriksson J, Rorden C, Elm J et al (2018) Transcranial direct current stimulation vs sham stimulation to treat aphasia after stroke. JAMA Neurol 75:1470–1477

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Geroin C, Picelli A, Munari D et al (2011) Combined transcranial direct current stimulation and robot-assisted gait training in patients with chronic stroke: a preliminary comparison. Clin Rehabil 25:537–548

    PubMed  Google Scholar 

  19. 19.

    Grefkes C, Fink GR (2014) Connectivity-based approaches in stroke and recovery of function. Lancet Neurol 13:206–216

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Grefkes C, Nowak DA, Eickhoff SB et al (2008) Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63:236–246

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Grefkes C, Ward NS (2014) Cortical reorganization after stroke: how much and how functional? Neuroscientist 20:56–70

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Grefkes C, Nowak DA, Wang LE et al (2010) Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling – ScienceDirect. Neuroimage 2013:233–242

    Google Scholar 

  23. 23.

    Guan Y‑Z, Li J, Zhang X‑W et al (2017) Effectiveness of repetitive transcranial magnetic stimulation (rTMS) after acute stroke: a one-year longitudinal randomized trial. CNS Neurosci Ther 23:940–946

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Hamada M, Murase N, Hasan A et al (2013) The role of interneuron networks in driving human motor cortical plasticity. Cereb Cortex 23:1593–1605

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Hankey GJ (2017) Stroke. Lancet 389:641–654

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Hao Z, Wang D, Zeng Y, Liu M (2013) Repetitive transcranial magnetic stimulation for improving function after stroke. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.cd008862.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Harvey RL, Edwards D, Dunning K et al (2018) Randomized sham-controlled trial of navigated repetitive transcranial magnetic stimulation for motor recovery in stroke. Stroke 49:2138–2146

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Hesse S, Waldner A, Mehrholz J et al (2011) Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients. Neurorehabil Neural Repair 25:838–846

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Huang M, Harvey RL, Stoykov ME et al (2008) Cortical stimulation for upper limb recovery following ischemic stroke: a small phase II pilot study of a fully implanted stimulator. Top Stroke Rehabil 15:160–172

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Huang Y‑Z, Edwards MJ, Rounis E et al (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Huang Y‑Z, Lin L‑F, Chang K‑H et al (2018) Priming with 1‑Hz repetitive transcranial magnetic stimulation over contralesional leg motor cortex does not increase the rate of regaining ambulation within 3 months of stroke. Am J Phys Med Rehabil 97:339–345

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Hummel FC, Cohen LG (2006) Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 5:708–712

    PubMed  Google Scholar 

  33. 33.

    Keeser D, Meindl T, Bor J et al (2011) Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J Neurosci 31:15284–15293

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Khedr EM, Shawky OA, El-Hammady DH et al (2013) Effect of anodal versus cathodal transcranial direct current stimulation on stroke rehabilitation. Neurorehabil Neural Repair 27:592–601

    PubMed  Google Scholar 

  35. 35.

    Klomjai W, Lackmy-Vallée A, Roche N et al (2015) Repetitive transcranial magnetic stimulation and transcranial direct current stimulation in motor rehabilitation after stroke: an update. Ann Phys Rehabil Med 58:220–224

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Lai C‑J, Wang C‑P, Tsai P‑Y et al (2015) Corticospinal integrity and motor impairment predict outcomes after excitatory repetitive transcranial magnetic stimulation: a preliminary study. Arch Phys Med Rehabil 96:69–75

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Langhorne P, Bernhardt J, Kwakkel G (2011) Stroke rehabilitation. Lancet 377:1693–1702

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Lefaucheur J‑P, André-Obadia N, Antal A et al (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 125:2150–2206

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Lefaucheur J‑P, Antal A, Ayache SS et al (2017) Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol 128:56–92

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Levy R, Ruland S, Weinand M et al (2008) Cortical stimulation for the rehabilitation of patients with hemiparetic stroke: a multicenter feasibility study of safety and efficacy. J Neurosurg 108:707–714

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Li J, Meng X‑M, Li R‑Y et al (2016) Effects of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper limb motor dysfunction in patients with subacute cerebral infarction. Neural Regen Res 11:1584

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Liew S‑L, Santarnecchi E, Buch ER, Cohen LG (2014) Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Front Hum Neurosci 8:265

    Google Scholar 

  43. 43.

    Lin L‑F, Chang K‑H, Huang Y‑Z et al (2018) Simultaneous stimulation in bilateral leg motor areas with intermittent theta burst stimulation to improve functional performance after stroke: a feasibility pilot study. Eur J Phys Rehabil Med 55:1–23

    Google Scholar 

  44. 44.

    Lin Y, Hu C, Chi J et al (2015) Effects of repetitive transcranial magnetic stimulation of the unaffected hemisphere leg motor area in patients with subacute stroke and substantial leg impairment: a pilot study. J Rehabil Med 47:305–310

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Lindenberg R, Renga V, Zhu LL et al (2010) Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Baillieres Clin Neurol 75:2176–2184

    CAS  Google Scholar 

  46. 46.

    Long H, Wang H, Zhao C et al (2018) Effects of combining high- and low-frequency repetitive transcranial magnetic stimulation on upper limb hemiparesis in the early phase of stroke. Restor Neurol Neurosci 36:21–30

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Lüdemann-Podubecká J, Bösl K, Theilig S et al (2015) The effectiveness of 1 Hz rTMS over the primary motor area of the unaffected hemisphere to improve hand function after stroke depends on hemispheric dominance. Brain Stimul 8:823–830

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Matsuura A, Onoda K, Oguro H, Yamaguchi S (2015) Magnetic stimulation and movement-related cortical activity for acute stroke with hemiparesis. Eur J Neurol 22:1526–1532

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Murase N, Duque J, Mazzocchio R, Cohen LG (2004) Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55:400–409

    PubMed  Google Scholar 

  50. 50.

    Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527:633–639

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57:1899–1901

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Nowak DA, Grefkes C, Dafotakis M et al (2008) Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke. Arch Neurol 65:741–747

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Plautz EJ, Barbay S, Frost SB et al (2013) Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates. Neurol Res 25:801–810

    Google Scholar 

  54. 54.

    Plow EB, Carey JR, Nudo RJ, Pascual-Leone A (2009) Invasive cortical stimulation to promote recovery of function after stroke. Stroke 40:1926–1931

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Polanía R, Nitsche MA, Paulus W (2010) Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum Brain Mapp 32:1236–1249

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Polanía R, Paulus W, Nitsche MA (2011) Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp 33:2499–2508

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Rastgoo M, Naghdi S, Nakhostin Ansari N et al (2015) Effects of repetitive transcranial magnetic stimulation on lower extremity spasticity and motor function in stroke patients. Disabil Rehabil 38:1918–1926

    Google Scholar 

  58. 58.

    Rehme AK, Eickhoff SB, Wang LE et al (2011) Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. Neuroimage 55:1147–1158

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Rehme AK, Fink GR, von Cramon DY, Grefkes C (2011) The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cereb Cortex 21:756–768

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Rossi C, Sallustio F, Di Legge S et al (2013) Transcranial direct current stimulation of the affected hemisphere does not accelerate recovery of acute stroke patients. Eur J Neurol 20:202–204

    CAS  PubMed  Google Scholar 

  61. 61.

    Rossini PM, Burke D, Chen R et al (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 126:1071–1107

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Sasaki N, Abo M, Hara T et al (2016) High-frequency rTMS on leg motor area in the early phase of stroke. Acta Neurol Belg 117:189–194

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Sattler V, Acket B, Raposo N et al (2014) Anodal tDCS combined with radial nerve stimulation promotes hand motor recovery in the acute phase after Ischemic stroke. Neurorehabil Neural Repair 29:743–754

    Google Scholar 

  64. 64.

    Teskey GC, Flynn C, Goertzen CD et al (2013) Cortical stimulation improves skilled forelimb use following a focal ischemic infarct in the rat. Neurol Res 25:794–800

    Google Scholar 

  65. 65.

    Veerbeek JM, Kwakkel G, van Wegen EEH et al (2011) Early prediction of outcome of activities of daily living after stroke. Stroke 42:1482–1488

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Viana RT, Laurentino GEC, Souza RJP et al (2014) Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: a pilot randomized controlled trial. NeuroRehabilitation 34:437–446

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Volz LJ, Rehme AK, Michely J et al (2016) Shaping early reorganization of neural networks promotes motor function after stroke. Cereb Cortex 26:2882–2894

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Ward NS, Brown MM, Thompson AJ, Frackowiak RSJ (2003) Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 126:2476–2496

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prof. Dr. Christian Grefkes.

Ethics declarations

Interessenkonflikt

C. Tscherpel und C. Grefkes geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tscherpel, C., Grefkes, C. Hirnstimulation zur Behandlung schlaganfallbedingter motorischer Defizite. Nervenarzt 90, 1005–1012 (2019). https://doi.org/10.1007/s00115-019-00799-7

Download citation

Schlüsselwörter

  • Transkranielle Magnetstimulation
  • Transkranielle Gleichstromstimulation
  • Neurorehabilitation
  • Funktionelle Magnetresonanztomographie
  • Konnektivität

Keywords

  • Transcranial magnetic stimulation
  • Transcranial direct current stimulation
  • Neurorehabilitation
  • Functional magnetic resonance imaging
  • Connectivity