Skip to main content
Log in

Mitochondriale Erkrankungen

Mitochondrial diseases

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Mitochondriale Erkrankungen (ME) werden durch Mutationen der mitochondrialen DNA oder der nukleären DNA verursacht. ME betreffen besonders Gewebe mit hohem Energiebedarf. Die häufigsten mitochondrialen Erkrankungen sind die Lebersche hereditäre Optikusneuropathie (LHON), die chronisch progressive externe Ophthalmoplegie (CPEO) und die mitochondriale Enzephalomyopathie mit Laktatazidose und schlaganfallähnlichen Episoden (MELAS). Die Therapie der ME umfasst die Überbrückung von Atmungskettendefekten, die Verbesserung des mitochondrialen Stoffwechsels, die Supplementation fehlender Faktoren sowie symptomatische Therapien. Erste gentherapeutische Ansätze zur kausalen Therapie sind in der klinischen Entwicklung. Dieser Artikel bietet eine Einführung zu den ME, eine Auswahl der wichtigsten Krankheitsbilder sowie einen Überblick über etablierte und innovative Therapieansätze.

Abstract

Mitochondrial diseases (MD) are caused by mutations in the mitochondrial DNA or nuclear DNA. The clinical manifestation is often most severe in tissues with high energy demands. The most common MDs are Leber’s hereditary optic neuropathy (LHON), chronic progressive external ophthalmoplegia (CPEO) and mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS). Therapeutic approaches for MD include bridging of respiratory chain defects, pharmacological stimulation of mitochondrial metabolism, supplementation of deficient factors and symptomatic treatment. Initial gene therapeutic approaches for causal treatment have already reached the clinical development stage. This article provides an introduction to MD, a summary of the most important syndromes and an overview over established and innovative therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Bacman SR, Williams SL, Pinto M et al (2013) Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 19:1111–1113

    Article  CAS  Google Scholar 

  2. Bonnefont JP, Bastin J, Laforet P et al (2010) Long-term follow-up of bezafibrate treatment in patients with the myopathic form of carnitine palmitoyltransferase 2 deficiency. Clin Pharmacol Ther 88:101–108

    Article  CAS  Google Scholar 

  3. Campos Y, Huertas R, Lorenzo G et al (1993) Plasma carnitine insufficiency and effectiveness of L‑carnitine therapy in patients with mitochondrial myopathy. Muscle Nerve 16:150–153

    Article  CAS  Google Scholar 

  4. Dimauro S, Davidzon G (2005) Mitochondrial DNA and disease. Ann Med 37:222–232

    Article  CAS  Google Scholar 

  5. Elstner M, Andreoli C, Klopstock T et al (2009) The mitochondrial proteome database: MitoP2. Meth Enzymol 457:3–20

    Article  CAS  Google Scholar 

  6. Enns GM, Kinsman SL, Perlman SL et al (2012) Initial experience in the treatment of inherited mitochondrial disease with EPI-743. Mol Genet Metab 105:91–102

    Article  CAS  Google Scholar 

  7. Feuer WJ, Schiffman JC, Davis JL et al (2016) Gene therapy for Leber hereditary optic neuropathy: initial results. Ophthalmology 123:558–570

    Article  Google Scholar 

  8. Fujii T, Nozaki F, Saito K et al (2014) Efficacy of pyruvate therapy in patients with mitochondrial disease: a semi-quantitative clinical evaluation study. Mol Genet Metab 112:133–138

    Article  CAS  Google Scholar 

  9. Gammage PA, Rorbach J, Vincent AI et al (2014) Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol Med 6:458–466

    Article  CAS  Google Scholar 

  10. Gempel K, Topaloglu H, Talim B et al (2007) The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain 130:2037–2044

    Article  Google Scholar 

  11. Hirano M (1993) Mitochondrial neurogastrointestinal encephalopathy disease. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (Hrsg) GeneReviews. University of Washington, Seattle

    Google Scholar 

  12. Janssen MCH, Koene S, De Laat P et al (2018) The KHENERGY study: safety and efficacy of KH176 in mitochondrial m.3243A〉G spectrum disorders. Clin Pharmacol Ther. https://doi.org/10.1002/cpt.1197

    Article  PubMed  Google Scholar 

  13. Karaa A, Haas R, Goldstein A et al (2018) Randomized dose-escalation trial of elamipretide in adults with primary mitochondrial myopathy. Baillieres Clin Neurol. https://doi.org/10.1212/wnl.0000000000005461

    Article  Google Scholar 

  14. Kirkman MA, Yu-Wai-Man P, Korsten A et al (2009) Gene-environment interactions in Leber hereditary optic neuropathy. Brain 132:2317–2326

    Article  Google Scholar 

  15. Klopstock T, Klopstock B, Prokisch H (2016) Mitochondrial replacement approaches: challenges for clinical implementation. Genome Med 8:126

    Article  Google Scholar 

  16. Klopstock T, Yu-Wai-Man P, Dimitriadis K et al (2011) A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain 134:2677–2686

    Article  Google Scholar 

  17. Klopstock T, Querner V, Schmidt F et al (2000) A placebo-controlled crossover trial of creatine in mitochondrial diseases. Neurology 55:1748-1751

    CAS  Google Scholar 

  18. Kornblum C, Klopstock T (2017) Mitochondriale Erkrankungen. In: Diener HC, Weimar C (Hrsg) Leitlinien für Diagnostik und Therapie in der Neurologie. Thieme, Stuttgart, S 275 ff

    Google Scholar 

  19. Kornblum C, Schroder R, Muller K et al (2005) Creatine has no beneficial effect on skeletal muscle energy metabolism in patients with single mitochondrial DNA deletions: a placebo-controlled, double-blind 31P-MRS crossover study. Eur J Neurol 12:300–309

    Article  CAS  Google Scholar 

  20. Lara MC, Weiss B, Illa I et al (2006) Infusion of platelets transiently reduces nucleoside overload in MNGIE. Baillieres Clin Neurol 67:1461–1463

    CAS  Google Scholar 

  21. Matthews PM, Ford B, Dandurand RJ et al (1993) Coenzyme Q10 with multiple vitamins is generally ineffective in treatment of mitochondrial disease. Baillieres Clin Neurol 43:884–890

    CAS  Google Scholar 

  22. Munnich A, Rotig A, Chretien D et al (1996) Clinical presentations and laboratory investigations in respiratory chain deficiency. Eur J Pediatr 155:262–274

    Article  CAS  Google Scholar 

  23. Murphy JL, Blakely EL, Schaefer AM et al (2008) Resistance training in patients with single, large-scale deletions of mitochondrial DNA. Brain 131:2832–2840

    Article  Google Scholar 

  24. Ohsawa Y, Hagiwara H, Nishimatsu SI et al (2018) Taurine supplementation for prevention of stroke-like episodes in MELAS: a multicentre, open-label, 52-week phase III trial. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2018-317964

    Article  PubMed  Google Scholar 

  25. Orngreen MC, Vissing J, Laforet P (2015) No effect of bezafibrate in patients with CPTII and VLCAD deficiencies. J Inherit Metab Dis 38:373–374

    Article  Google Scholar 

  26. Parikh S, Goldstein A, Koenig MK et al (2015) Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet Med 17:689–701

    Article  CAS  Google Scholar 

  27. Radelfahr F, Klopstock T (2018) Diagnostic and therapeutic approaches for mitochondrial diseases. Fortschr Neurol Psychiatr 86:584–591

    Article  Google Scholar 

  28. Rai PK, Craven L, Hoogewijs K et al (2018) Advances in methods for reducing mitochondrial DNA disease by replacing or manipulating the mitochondrial genome. Essays Biochem 62:455–465

    Article  Google Scholar 

  29. Repp BM, Mastantuono E, Alston CL et al (2018) Clinical, biochemical and genetic spectrum of 70 patients with ACAD9 deficiency: is riboflavin supplementation effective? Orphanet J Rare Dis 13:120

    Article  Google Scholar 

  30. Romero-Moya D, Castano J, Santos-Ocana C et al (2017) Generation, genome edition and characterization of iPSC lines from a patient with coenzyme Q10 deficiency harboring a heterozygous mutation in COQ4 gene. Stem Cell Res 24:144–147

    Article  CAS  Google Scholar 

  31. Rudolph G, Dimitriadis K, Buchner B et al (2013) Effects of idebenone on color vision in patients with leber hereditary optic neuropathy. J Neuroophthalmol 33:30–36

    Article  Google Scholar 

  32. Schaefer AM, Mcfarland R, Blakely EL et al (2008) Prevalence of mitochondrial DNA disease in adults. Ann Neurol 63:35–39

    Article  CAS  Google Scholar 

  33. Seo KS, Kim JH, Min KN et al (2018) KL1333, a novel NAD(+) modulator, improves energy metabolism and mitochondrial dysfunction in MELAS fibroblasts. Front Neurol 9:552

    Article  Google Scholar 

  34. Stendel C, Klopstock T (2016) Mitochondriale Erkrankungen. InFo Neurol 18:36–48

    Article  Google Scholar 

  35. Wan X, Pei H, Zhao MJ et al (2016) Efficacy and safety of rAAV2-ND4 treatment for Leber’s hereditary optic neuropathy. Sci Rep 6:21587

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florentine Radelfahr.

Ethics declarations

Interessenkonflikt

Die Autoren erklären, dass sie sich bei der Erstellung des Beitrags von keinen wirtschaftlichen Interessen haben leiten lassen. T. Klopstock gibt an, dass er Forschungsgelder, Reisekosten, Vortrags- und Beratungshonorare von den Firmen Santhera Pharmaceuticals und GenSight Biologics erhalten hat, deren Produkte im Artikel direkt oder indirekt genannt werden. F. Radelfahr gibt keine Interessenkonflikte an.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radelfahr, F., Klopstock, T. Mitochondriale Erkrankungen. Nervenarzt 90, 121–130 (2019). https://doi.org/10.1007/s00115-018-0666-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-018-0666-2

Schlüsselwörter

Keywords

Navigation