Skip to main content
Log in

Tauopathien

Vom Molekül zur Therapie

Tauopathies

From molecule to therapy

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Aggregation des mikrotubuliassoziierten Proteins Tau in Nervenzellen definiert eine Gruppe neurodegenerativer Krankheiten, welche Tauopathien genannt werden.

Ziel der Arbeit

Erstellung eines aktuellen Übersichtsartikels zum Stand der klinischen Forschung auf dem Gebiet der Tauopathien.

Material und Methoden

Systematischer Review über die Literatur der letzten 10 Jahre.

Ergebnis

Tau wird vermehrt als hochvariables Protein wahrgenommen, welches ein Spektrum von Erkrankungen molekular definiert. Das klinische Bild der Tauopathien reicht von Demenzen bis zu hypokinetischen Bewegungsstörungen. Genetische Variation am Tau-Lokus kann Krankheiten auslösen oder das Krankheitsrisiko verändern. Modifikationen im Tau-Protein können Nervenzellen schädigen und die Krankheitsprozesse durch das Gehirn propagieren. Daher kann Tau sowohl als serologischer als auch als bildgebender Biomarker verwendet werden. Tau bietet auch ein breites Spektrum an rationalen therapeutischen Interventionsmöglichkeiten, um die Krankheitsprogression zu modifizieren. Diese Erkenntnisse haben zu modernen klinischen Prüfungen geführt.

Diskussion

Das Feld der Tauopathien ist in raschem und dynamischem Fortschritt begriffen, der eine intensive interdisziplinäre Kooperation voraussetzt.

Abstract

Background

The microtubule-associated tau protein is the defining denominator of a group of neurodegenerative diseases termed tauopathies.

Objective

Provide a timely state of the art review on recent scientific advances in the field of tauopathies.

Material and methods

Systematic review of the literature from the past 10 years.

Results

Tau proteins are increasingly being recognized as a highly variable protein, underlying and defining a spectrum of molecularly defined diseases, with a clinical spectrum ranging from dementia to hypokinetic movement disorders. Genetic variation at the tau locus can trigger disease or modify disease risk. Tau protein alterations can damage nerve cells and propagate pathologies through the brain. Thus, tau proteins may serve both as a serological and imaging biomarker. Tau proteins also provide a broad spectrum of rational therapeutic interventions to prevent disease progression. This knowledge has led to modern clinical trials.

Conclusion

The field of tauopathies is in a state of dynamic and rapid progress, requiring close interdisciplinary collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Kovacs GG (2015) Neuropathology of tauopathies: principles and practice. Neuropathol Appl Neurobiol 41:3–23

    Article  CAS  Google Scholar 

  2. Ahmed Z, Bigio EH, Budka H et al (2013) Globular glial tauopathies (GGT): consensus recommendations. Acta Neuropathol 126:537–544

    Article  Google Scholar 

  3. Crary JF, Trojanowski JQ, Schneider JA et al (2014) Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol 128:755–766

    Article  CAS  Google Scholar 

  4. Kovacs GG, Ferrer I, Grinberg LT et al (2016) Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy. Acta Neuropathol 131:87–102

    Article  CAS  Google Scholar 

  5. McKee AC, Stein TD, Kiernan PT, Alvarez VE (2015) The neuropathology of chronic traumatic encephalopathy. Brain Pathol 25:350–364

    Article  CAS  Google Scholar 

  6. Gelpi E, Höftberger R, Graus F et al (2016) Neuropathological criteria of anti-IgLON5-related tauopathy. Acta Neuropathol 132:531–543

    Article  CAS  Google Scholar 

  7. Irwin DJ (2016) Tauopathies as clinicopathological entities. Parkinsonism Relat Disord 22:29–33

    Article  Google Scholar 

  8. Kouri N, Whitwell JL, Josephs KA et al (2011) Corticobasal degeneration: a pathologically distinct 4R tauopathy. Nat Rev Neurol 7:263–272

    Article  CAS  Google Scholar 

  9. Josephs KA, Petersen RC, Knopman DS et al (2006) Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology 10:41–48

    Article  Google Scholar 

  10. Graff-Radford J, Josephs KA, Parisi JE et al (2016) Globular glial tau pathology presenting as semantic variant primary progressive aphasia. JAMA Neurol 73:123–125

    Article  Google Scholar 

  11. Respondek G, Kurz C, Arzberger T et al (2017) Which ante mortem clinical features predict progressive supranuclear palsy pathology? Mov Disord 32:995–1005

    Article  Google Scholar 

  12. Chahine LM, Reibeiz T, Reibeiz JJ (2014) Corticobasal syndrome: five new things. Neurol Clin Pract 4:304–312

    Article  Google Scholar 

  13. van Eimeren T, Bischof GN, Drzezga AE (2017) Is tau imaging more than just ‘upside-down’ FDG imaging? J Nucl Med 117:190082

    Google Scholar 

  14. Hammes J, Bischof GN, Giehl K et al (2017) Elevated in vivo [18F]-AV-1451 uptake in a patient with progressive supranuclear palsy. Mov Disord 32:170–171

    Article  Google Scholar 

  15. Schweyer K, Busche MA, Hammes J et al (2018) Ocular motor apraxia as essential differential diagnosis to supranuclear gaze palsy. Neurology 90:482–485

    Article  Google Scholar 

  16. Mattsson N, Lönneborg A, Boccardi M et al (2017) Clinical validity of cerebrospinal fluid Aβ42, tau, and phospho-tau as biomarkers for Alzheimer’s disease in the context of a structured 5‑phase development framework. Neurobiol Aging 52:196–213

    Article  CAS  Google Scholar 

  17. Hu WT, Watts K, Grossman M et al (2013) Reduced CSF p‑Tau181 to Tau ratio is a biomarker for FTLD-TDP. Neurology 81:1945–1952

    Article  CAS  Google Scholar 

  18. Boxer AL, Yu JT, Golbe LI et al (2017) Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol 16:552–563

    Article  Google Scholar 

  19. Rojas JC, Bang J, Lobach IV et al (2018) CSF neurofilament light chain and phosphorylated tau 181 predict disease progression in PSP. Neurology 90:e273–e281

    Article  CAS  Google Scholar 

  20. Pickering-Brown S, Baker M, Yen S‑H et al (2000) Pick’s disease is associated with mutations in the tau gene. Ann Neurol 48:859–867

    Article  CAS  Google Scholar 

  21. Forrest SL, Kril JJ, Stevens CH et al (2018) Retiring the term FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies. Brain 141:521–534

    Article  Google Scholar 

  22. Donker Kaat L, Boon AJ, Azmani A et al (2009) Familial aggregation of parkinsonismin in progressive supranuclear palsy. Neurology 73:98–105

    Article  CAS  Google Scholar 

  23. Kouri N, Carlomagno Y, Baker M et al (2014) Novel mutation in MAPT exon 13 (p.N410H) causes corticobasal degeneration. Acta Neuropathol 127:271–282

    Article  CAS  Google Scholar 

  24. Höglinger GU, Melhem NM, Dickson DW et al (2011) Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet 43:699–705

    Article  Google Scholar 

  25. Kouri N, Ross OA, Dombroski B et al (2015) Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy. Nat Commun 6:7247

    Article  CAS  Google Scholar 

  26. Iqbal K, Liu F, Gong CX (2016) Tau and neurodegenerative disease: the story so far. Nat Rev Neurol 12:15–27

    Article  CAS  Google Scholar 

  27. Clinicaltrials.gov (2018) ncbi.nlm.nih.gov/pubmed. Zugegriffen: 05.01.2018

  28. Alzforum (2018) https://www.alzforum.org/. Zugegriffen: 05.01.2018

  29. Stamelou M, Reuss A, Pilatus U et al (2008) Short-term effects of coenzyme Q10 in progressive supranuclear palsy: a randomized, placebo-controlled trial. Mov Disord 23:942–949

    Article  Google Scholar 

  30. Apetauerova D, Scala SA, Hamill R et al (2016) CoQ10 in progressive supranuclear palsy: a randomized, placebo-controlled, double-blind trial. Neurol Neuroimmunol Neuroinflamm 3:e266

    Article  Google Scholar 

  31. Tolosa E, Litvan I, Hoglinger GU et al (2014) A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord 29:470–478

    Article  CAS  Google Scholar 

  32. Hoglinger GU, Huppertz HJ, Wagenpfeil S et al (2014) Tideglusib reduces progression of brain atrophy in progressive supranuclear palsy in a randomized trial. Mov Disord 29:479–487

    Article  Google Scholar 

  33. Leclair-Visonneau L, Rouaud T, Debilly B et al (2016) Randomized placebo-controlled trial of sodium valproate in progressive supranuclear palsy. Clin Neurol Neurosurg 146:35–39

    Article  Google Scholar 

  34. Boxer AL, Lang AE, Grossman M et al (2014) Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol 13:676–685

    Article  CAS  Google Scholar 

  35. Boxer AL, Qureshi I, Grundman M et al (2018) Multiple ascending dose study of the tau-directed monoclonal antibody BIIB092 in patients with progressive supranuclear palsy. Neurology 90(15 Supplement):S27.004

    Google Scholar 

  36. Novak P, Schmidt R, Kontsekova E et al (2017) Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol 16:123–134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. U. Höglinger.

Ethics declarations

Interessenkonflikt

G. G. Kovacs, G. Respondek hielt Vorträge für GE Health. G. U. Höglinger wurde gefördert von Neuropore, GE Health; beriet AbbVie, Alzprotect, Asceneuron, Axon Neuroscience, Biogen, Bristol-Myers Squibb, Novartis, Roche, UCB; hielt Vorträge für AbbVie, Roche, Teva, UCB. T. vanEimeren, E. Höller, J. Levin, U. Müller, S. Schwarz, T. W. Rösler und K. Schweyer geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovacs, G.G., Respondek, G., van Eimeren, T. et al. Tauopathien. Nervenarzt 89, 1083–1094 (2018). https://doi.org/10.1007/s00115-018-0584-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-018-0584-3

Schlüsselwörter

Keywords

Navigation