Advertisement

Der Nervenarzt

, Volume 89, Issue 6, pp 620–631 | Cite as

Diagnostik und konservative Therapie zervikaler und lumbaler Spinalkanalstenosen

  • A. Hug
  • S. Hähnel
  • N. Weidner
Leitthema
  • 473 Downloads

Zusammenfassung

Hintergrund

Degenerative stenosierende Wirbelsäulenveränderungen sind bei älteren Menschen nicht selten Ursache einer zervikalen Myelopathie (zervikale spondylotische Myelopathie, CSM) bzw. von Cauda-equina-Läsionen. Diagnostik und Therapie solcher Läsionen sind wenig standardisiert.

Ziel der Arbeit

Es soll ein Überblick über Diagnostik und Therapie neurologisch relevanter zervikaler und lumbaler Spinalstenosen gegeben werden.

Material und Methoden

Übersichtsarbeit ausgewählter Literatur.

Ergebnisse und Diskussion

Die klinisch-neurologische Untersuchung und die radiologische Bildgebung sind Grundpfeiler der Diagnostik neurologisch relevanter zervikaler und lumbaler Spinalstenosen. Zusätzliche laborchemische Untersuchungen dienen zum Ausschluss relevanter Differenzialdiagnosen. Neurophysiologische Untersuchungstechniken sind speziellen Fragestellungen vorbehalten. Die Effektivität konservativer Therapiemaßnahmen ist nur unzureichend untersucht.

Schlüsselwörter

Zervikale spondylotische Myelopathie Cauda-equina-Schädigung Degenerative Spondylose Radiologie Funktionsdiagnostik 

Diagnostics and conservative treatment of cervical and lumbar spinal stenosis

Abstract

Background

Degenerative stenotic spondylosis is not an uncommon cause of cervical spondylotic myelopathy (CSM) and cauda equina lesions in the aged population. Limited standardization exists with respect to diagnostic and therapeutic procedures.

Objective

Literature review with respect to diagnostic and therapeutic procedures for neurologically relevant cervical and lumbar spinals stenosis.

Material and methods

Comprehensive literature review.

Results and conclusion

Clinical neurological examination and diagnostic imaging are fundamental for the diagnosis of neurologically relevant cervical and lumbar spinal stenosis. Additional laboratory blood and cerebrospinal fluid testing might be required for a differential diagnosis. Neurophysiological testing is reserved for specific clinical problems. The clinical evidence for the efficacy of conservative therapeutic strategies is limited.

Keywords

Cervical spondylotic myelopathy Cauda equina lesion Degenerative spondylosis Radiology Functional diagnostics 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

A. Hug, S. Hähnel und N. Weidner geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Amundsen T, Weber H, Lilleas F et al (1995) Lumbar spinal stenosis. Clinical and radiologic features. Spine (Phila Pa 1976) 20:1178–1186CrossRefGoogle Scholar
  2. 2.
    Arnoldi CC, Brodsky AE, Cauchoix J et al (1976) Lumbar spinal stenosis and nerve root entrapment syndromes. Definition and classification. Clin Orthop Relat Res 115:4–5Google Scholar
  3. 3.
    Bednarik J, Kadanka Z, Dusek L et al (2004) Presymptomatic spondylotic cervical cord compression. Spine (Phila Pa 1976) 29:2260–2269CrossRefGoogle Scholar
  4. 4.
    Bednarik J, Kadanka Z, Vohanka S et al (1998) The value of somatosensory and motor evoked evoked potentials in pre-clinical spondylotic cervical cord compression. Eur Spine J 7:493–500CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bednarik J, Kadanka Z, Vohanka S et al (1999) The value of somatosensory- and motor-evoked potentials in predicting and monitoring the effect of therapy in spondylotic cervical myelopathy. Prospective randomized study. Spine (Phila Pa 1976) 24:1593–1598CrossRefGoogle Scholar
  6. 6.
    Bednarik J, Sladkova D, Kadanka Z et al (2011) Are subjects with spondylotic cervical cord encroachment at increased risk of cervical spinal cord injury after minor trauma? J Neurol Neurosurg Psychiatr 82:779–781CrossRefGoogle Scholar
  7. 7.
    Benzel EC, Lancon J, Kesterson L et al (1991) Cervical laminectomy and dentate ligament section for cervical spondylotic myelopathy. J Spinal Disord 4:286–295CrossRefPubMedGoogle Scholar
  8. 8.
    Berthier E, Turjman F, Mauguiere F (1996) Diagnostic utility of somatosensory evoked potentials (SEPs) in presurgical assessment of cervical spondylotic myelopathy. Neurophysiol Clin 26:300–310CrossRefPubMedGoogle Scholar
  9. 9.
    Binder DK, Schmidt MH, Weinstein PR (2002) Lumbar spinal stenosis. Semin Neurol 22:157–166CrossRefPubMedGoogle Scholar
  10. 10.
    Boden SD, Davis DO, Dina TS et al (1990) Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am 72:403–408CrossRefPubMedGoogle Scholar
  11. 11.
    Boden SD, Mccowin PR, Davis DO et al (1990) Abnormal magnetic-resonance scans of the cervical spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am 72:1178–1184CrossRefPubMedGoogle Scholar
  12. 12.
    Böthig R, Domurath B, Kaufmann A et al. S2k-Leitlinie der Deutschsprachigen Medizinischen Gesellschaft für Paraplegie (2016) Neuro-urologische Versorgung querschnittgelähmter Patienten. 2016. Deutschsprachige Medizinische Gesellschaft für Paraplegie (http://www.awmf.org/uploads/tx_szleitlinien/179-001l_S2k_Neurourologische_Versorgung_Querschnittsgelaehmter_2016-11.pdf abgerufen am 13.02.2018)Google Scholar
  13. 13.
    Brain WR, Northfield D, Wilkinson M (1952) The neurological manifestations of cervical spondylosis. Brain 75:187–225CrossRefPubMedGoogle Scholar
  14. 14.
    Brunholzl C, Claus D (1994) Central motor conduction time to upper and lower limbs in cervical cord lesions. Arch Neurol 51:245–249CrossRefPubMedGoogle Scholar
  15. 15.
    Chiodo A, Haig AJ, Yamakawa KS et al (2007) Needle EMG has a lower false positive rate than MRI in asymptomatic older adults being evaluated for lumbar spinal stenosis. Clin Neurophysiol 118:751–756CrossRefPubMedGoogle Scholar
  16. 16.
    Clarke E, Robinson PK (1956) Cervical myelopathy: a complication of cervical spondylosis. Brain 79:483–510CrossRefPubMedGoogle Scholar
  17. 17.
    Conway J, Tomkins CC, Haig AJ (2011) Walking assessment in people with lumbar spinal stenosis: capacity, performance, and self-report measures. Spine J 11:816–823CrossRefPubMedGoogle Scholar
  18. 18.
    Di Lazzaro V, Restuccia D, Colosimo C et al (1992) The contribution of magnetic stimulation of the motor cortex to the diagnosis of cervical spondylotic myelopathy. Correlation of central motor conduction to distal and proximal upper limb muscles with clinical and MRI findings. Electroencephalogr Clin Neurophysiol 85:311–320CrossRefPubMedGoogle Scholar
  19. 19.
    Doppman JL (1975) The mechanism of ischemia in anteroposterior compression of the spinal cord. Invest Radiol 10:543–551CrossRefPubMedGoogle Scholar
  20. 20.
    Dvorak J, Herdmann J, Theiler R et al (1991) Magnetic stimulation of motor cortex and motor roots for painless evaluation of central and proximal peripheral motor pathways. Normal values and clinical application in disorders of the lumbar spine. Spine (Phila Pa 1976) 16:955–961CrossRefGoogle Scholar
  21. 21.
    Egli D, Hausmann O, Schmid M et al (2007) Lumbar spinal stenosis: assessment of cauda equina involvement by electrophysiological recordings. J Neurol 254:741–750CrossRefPubMedGoogle Scholar
  22. 22.
    Fehlings MG, Skaf G (1998) A review of the pathophysiology of cervical spondylotic myelopathy with insights for potential novel mechanisms drawn from traumatic spinal cord injury. Spine (Phila Pa 1976) 23:2730–2737CrossRefGoogle Scholar
  23. 23.
    Forsting M, Jansen O (Hrsg) (2014) MRT des Zentralnervensystems. Thieme, StuttgartGoogle Scholar
  24. 24.
    Fritz JM, Lurie JD, Zhao W et al (2014) Associations between physical therapy and long-term outcomes for individuals with lumbar spinal stenosis in the SPORT study. Spine J 14:1611–1621CrossRefPubMedGoogle Scholar
  25. 25.
    Glocker X, Binggeli RS, Bischoff C et al (2017) S2k-Leitlinie Lumbale Radikulopathie. In: Deutsche Gesellschaft für Neurologie, Hrsg. Leitlinien für Diagnostik und Therapie in der Neurologie. https://www.dgn.org/images/red_leitlinien/LL_2012/pdf/ll_75_2012_lumbale_radikulopathie.pdf. Zugegriffen: 11. Jan. 2018Google Scholar
  26. 26.
    Hagen EM, Rekand T (2015) Management of neuropathic pain associated with spinal cord injury. Pain Ther 4:51–65CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hähnel S, Forsting M, Dörfler A et al (1996) Radiologie der lumbalen Wirbelkanalstenose. Aktuelle Radiol 6:165–170PubMedGoogle Scholar
  28. 28.
    Haig AJ, Tong HC, Yamakawa KS et al (2005) The sensitivity and specificity of electrodiagnostic testing for the clinical syndrome of lumbar spinal stenosis. Spine (Phila Pa 1976) 30:2667–2676CrossRefGoogle Scholar
  29. 29.
    Hensel C, Eck U, Alimusaj M et al (2017) Neurorehabilitation: strategies of lower extremities restoration. In: Weidner N, Rupp R, Tansey KE (Hrsg) Neurological aspects of spinal cord injury. Springer, Cham, S 649–688CrossRefGoogle Scholar
  30. 30.
    Jaskolski DJ, Jarratt JA, Jakubowski J (1989) Clinical evaluation of magnetic stimulation in cervical spondylosis. Br J Neurosurg 3:541–548CrossRefPubMedGoogle Scholar
  31. 31.
    Jinkins JR (2004) Acquired degenerative changes of the intervertebral segments at and suprajacent to the lumbosacral junction. A radioanatomic analysis of the nondiscal structures of the spinal column and perispinal soft tissues. Eur J Radiol 50:134–158CrossRefPubMedGoogle Scholar
  32. 32.
    Kadanka Z Jr., Adamova B, Kerkovsky M et al (2017) Predictors of symptomatic myelopathy in degenerative cervical spinal cord compression. Brain Behav 7:e797CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kalsi-Ryan S, Singh A, Massicotte EM et al (2013) Ancillary outcome measures for assessment of individuals with cervical spondylotic myelopathy. Spine (Phila Pa 1976) 38:S111–S122CrossRefGoogle Scholar
  34. 34.
    Kirkaldy-Willis WH, Mcivor GW (1976) Editorial: Lumbar spinal stenosis. Clin Orthop Relat Res 115:2–3Google Scholar
  35. 35.
    Kopjar B, Tetreault L, Kalsi-Ryan S et al (2015) Psychometric properties of the modified Japanese Orthopaedic Association scale in patients with cervical spondylotic myelopathy. Spine (Phila Pa 1976) 40:E23–E28CrossRefGoogle Scholar
  36. 36.
    Larocca H (1988) Cervical spondylotic myelopathy: natural history. Spine (Phila Pa 1976) 13:854–855CrossRefGoogle Scholar
  37. 37.
    Lees F, Turner JW (1963) Natural history and prognosis of cervical spondylosis. Br Med J 2:1607–1610CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lo YL, Chan LL, Lim W et al (2004) Systematic correlation of transcranial magnetic stimulation and magnetic resonance imaging in cervical spondylotic myelopathy. Spine (Phila Pa 1976) 29:1137–1145CrossRefGoogle Scholar
  39. 39.
    Ludolph AC, Reichel H, Binggeli RS et al (2017) S1-Leitlinie Zervikale spondylotische Myelopathie. In: Deutsche Gesellschaft für Neurologie (Hrsg) Leitlinien für Diagnostik und Therapie in der Neurologie (https://www.dgn.org/leitlinien/3423-030-052-zervikale-spondylotische-myelopathie-2017 abgerufen am 28.12.2017)Google Scholar
  40. 40.
    Lurie J, Tomkins-Lane C (2016) Management of lumbar spinal stenosis. BMJ 352:h6234CrossRefPubMedGoogle Scholar
  41. 41.
    Lyu RK, Tang LM, Chen CJ et al (2004) The use of evoked potentials for clinical correlation and surgical outcome in cervical spondylotic myelopathy with intramedullary high signal intensity on MRI. J Neurol Neurosurg Psychiatr 75:256–261Google Scholar
  42. 42.
    Macedo LG, Hum A, Kuleba L et al (2013) Physical therapy interventions for degenerative lumbar spinal stenosis: a systematic review. Phys Ther 93:1646–1660CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Maertens De Noordhout A, Remacle JM, Pepin JL et al (1991) Magnetic stimulation of the motor cortex in cervical spondylosis. Neurology 41:75–80CrossRefPubMedGoogle Scholar
  44. 44.
    Mehalic TF, Pezzuti RT, Applebaum BI (1990) Magnetic resonance imaging and cervical spondylotic myelopathy. Neurosurgery 26:217–226 (discussion 226–217)CrossRefPubMedGoogle Scholar
  45. 45.
    Modic MT, Masaryk TJ, Mulopulos GP et al (1986) Cervical radiculopathy: prospective evaluation with surface coil MR imaging, CT with metrizamide, and metrizamide myelography. Radiology 161:753–759CrossRefPubMedGoogle Scholar
  46. 46.
    Moojen WA, Schenck CD, Nijeholt GJ et al (2015) Preoperative MR imaging in patients with intermittent neurogenic claudication: relevance for diagnosis and prognosis. Spine (Phila Pa 1976) 43(5):348–355CrossRefGoogle Scholar
  47. 47.
    Moore AP, Blumhardt LD (1997) A prospective survey of the causes of non-traumatic spastic paraparesis and tetraparesis in 585 patients. Spinal Cord 35:361–367CrossRefPubMedGoogle Scholar
  48. 48.
    Morishita Y, Hida S, Naito M et al (2005) Evaluation of cervical spondylotic myelopathy using somatosensory-evoked potentials. Int Orthop 29:343–346CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    New PW, Cripps RA, Lee BB (2014) Global maps of non-traumatic spinal cord injury epidemiology: towards a living data repository. Spinal Cord 52:97–109CrossRefPubMedGoogle Scholar
  50. 50.
    Nikolaidis I, Fouyas IP, Sandercock PG et al (2010) Surgery for cervical radiculopathy or myelopathy. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD001466.pub3 PubMedCrossRefGoogle Scholar
  51. 51.
    Nouri A, Tetreault L, Singh A et al (2015) Degenerative cervical myelopathy: epidemiology, genetics, and pathogenesis. Spine (Phila Pa 1976) 40:E675–E693CrossRefGoogle Scholar
  52. 52.
    Nowak E, Euler M, Rupp R (2017) Neurorehabilitation of the upper extremity. In: Weidner N, Rupp R, Tansey KE (Hrsg) Neurological aspects of spinal cord injury. Springer, Cham, S 621–648CrossRefGoogle Scholar
  53. 53.
    Pohl M, Back T, Leimert M et al (2017) S2k-Leitlinie Zervikale Radikulopathie. 2017. In: Deutsche Gesellschaft für Neurologie, Hrsg. Leitlinien für Diagnostik und Therapie in der Neurologie. http://www.awmf.org/uploads/tx_szleitlinien/030-082l_S2k_Zervikale_Radikulopathie_2018-01.pdf. Zugegriffen: 11. Jan. 2018Google Scholar
  54. 54.
    Rainville J, Childs LA, Pena EB et al (2012) Quantification of walking ability in subjects with neurogenic claudication from lumbar spinal stenosis–a comparative study. Spine J 12:101–109CrossRefPubMedGoogle Scholar
  55. 55.
    Rajagopal S, Marshall RW (2010) Understanding and treating spinal stenosis. J Bone Joint Surg. (British Editorial)Google Scholar
  56. 56.
    Restuccia D, Di Lazzaro V, Valeriani M et al (1994) The role of upper limb somatosensory evoked potentials in the management of cervical spondylotic myelopathy: preliminary data. Electroencephalogr Clin Neurophysiol 92:502–509CrossRefPubMedGoogle Scholar
  57. 57.
    Restuccia D, Di Lazzaro V, Valeriani M et al (1992) Segmental dysfunction of the cervical cord revealed by abnormalities of the spinal N13 potential in cervical spondylotic myelopathy. Neurology 42:1054–1063CrossRefPubMedGoogle Scholar
  58. 58.
    Restuccia D, Valeriani M, Di Lazzaro V et al (1994) Somatosensory evoked potentials after multisegmental upper limb stimulation in diagnosis of cervical spondylotic myelopathy. J Neurol Neurosurg Psychiatr 57:301–308CrossRefGoogle Scholar
  59. 59.
    Rhee JM, Shamji MF, Erwin WM et al (2013) Nonoperative management of cervical myelopathy: a systematic review. Spine (Phila Pa 1976) 38:S55–S67CrossRefGoogle Scholar
  60. 60.
    Rindler RS, Chokshi FH, Malcolm JG et al (2017) Spinal diffusion tensor imaging in evaluation of preoperative and postoperative severity of cervical spondylotic myelopathy: systematic review of literature. World Neurosurg 99:150–158CrossRefPubMedGoogle Scholar
  61. 61.
    Saifuddin A (2000) The imaging of lumbar spinal stenosis. Clin Radiol 55:581–594CrossRefPubMedGoogle Scholar
  62. 62.
    Schroeder GD, Kurd MF, Vaccaro AR (2016) Lumbar spinal stenosis: how is it classified? J Am Acad Orthop Surg 24:843–852CrossRefPubMedGoogle Scholar
  63. 63.
    Secil Y, Ekinci AS, Bayram KB et al (2012) Diagnostic value of cauda equina motor conduction time in lumbar spinal stenosis. Clin Neurophysiol 123:1831–1835CrossRefPubMedGoogle Scholar
  64. 64.
    Simo M, Szirmai I, Aranyi Z (2004) Superior sensitivity of motor over somatosensory evoked potentials in the diagnosis of cervical spondylotic myelopathy. Eur J Neurol 11:621–626CrossRefPubMedGoogle Scholar
  65. 65.
    Tavy DL, Wagner GL, Keunen RW et al (1994) Transcranial magnetic stimulation in patients with cervical spondylotic myelopathy: clinical and radiological correlations. Muscle Nerve 17:235–241CrossRefPubMedGoogle Scholar
  66. 66.
    Tetreault L, Kopjar B, Nouri A et al (2017) The modified Japanese Orthopaedic Association scale: establishing criteria for mild, moderate and severe impairment in patients with degenerative cervical myelopathy. Eur Spine J 26:78–84CrossRefPubMedGoogle Scholar
  67. 67.
    Thome C, Borm W, Meyer F (2008) Degenerative lumbar spinal stenosis: current strategies in diagnosis and treatment. Dtsch Arztebl Int 105:373–379PubMedPubMedCentralGoogle Scholar
  68. 68.
    Tracy JA, Bartleson JD (2010) Cervical spondylotic myelopathy. Neurologist 16:176–187CrossRefPubMedGoogle Scholar
  69. 69.
    Travlos A, Pant B, Eisen A (1992) Transcranial magnetic stimulation for detection of preclinical cervical spondylotic myelopathy. Arch Phys Med Rehabil 73:442–446PubMedGoogle Scholar
  70. 70.
    Veilleux M, Daube JR (1987) The value of ulnar somatosensory evoked potentials (SEPs) in cervical myelopathy. Electroencephalogr Clin Neurophysiol 68:415–423CrossRefPubMedGoogle Scholar
  71. 71.
    Wada E, Ohmura M, Yonenobu K (1995) Intramedullary changes of the spinal cord in cervical spondylotic myelopathy. Spine (Phila Pa 1976) 20:2226–2232CrossRefGoogle Scholar
  72. 72.
    Yu YL, Jones SJ (1985) Somatosensory evoked potentials in cervical spondylosis. Correlation of median, ulnar and posterior tibial nerve responses with clinical and radiological findings. Brain 108(Pt 2):273–300CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Klinik für ParaplegiologieUniversitätsklinikum HeidelbergHeidelbergDeutschland
  2. 2.Abteilung NeuroradiologieUniversitätsklinikum HeidelbergHeidelbergDeutschland

Personalised recommendations