Skip to main content
Log in

Pathophysiologie des Tremors

Pathophysiology of tremor

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Tremor ist klinisch als rhythmische, oszillierende Bewegung von Körperpartien definiert, die funktionell zu einer Beeinträchtigung der Koordination und Ausführung zielgerichteter Bewegungen führen kann. Er kann Symptom einer Grunderkrankung sein, wie beispielweise der Ruhetremor bei Morbus Parkinson, oder als eigenständige Krankheit auftreten, wie z. B. der essenzielle oder der orthostatische Tremor. Bei der Entstehung von Tremor spielen sowohl zerebrale als auch spinale und muskuläre Mechanismen eine wichtige Rolle. Die vorliegende Arbeit stellt die Ergebnisse neuer bildgebender und elektrophysiologischer Untersuchungen dar, die zu wichtigen Fortschritten in unserem Verständnis der Pathophysiologie von Tremorerkrankungen geführt haben. Wir diskutieren Modelle für die Entstehung des Ruhetremors bei M. Parkinson, des essenziellen und des orthostatischen Tremors. Dabei schildern wir die aktuellen Weiterentwicklungen vom klassischen Generator-Modell mit einer Beteiligung einzelner zerebraler Regionen hin zu einer Netzwerkperspektive, in der pathologische Oszillationen durch Interaktionen in den neuronalen Netzwerken entstehen und sich ausbreiten. Dabei werden insbesondere neue translationale Ansätze vorgestellt, die als Grundlage für die Entwicklung neuer Therapiestrategien dienen könnten.

Abstract

Tremor is clinically defined as a rhythmic, oscillating movement of parts of the body, which functionally leads to impairment of the coordination and execution of targeted movements. It can be a symptom of a primary disease, such as resting tremor in Parkinson’s disease or occur as an independent disease, such as essential or orthostatic tremor. For the development of tremor, cerebral components as well as mechanisms at the spinal and muscular level play an important role. This review presents the results of new imaging and electrophysiological studies that have led to important advances in our understanding of the pathophysiology of tremor. We discuss pathophysiological models for the development of resting tremor in Parkinson’s disease, essential and orthostatic tremor. We describe recent developments starting from the classical generator model, with an onset of pathological oscillations in distinct cerebral regions, to a network perspective in which tremor arises and spreads through existing anatomical or newly emerged pathological brain networks. In particular translational approaches are presented and discussed. These could serve in the future as a basis for the development of new therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Louis ED, Ferreira JJ (2010) How common is the most common adult movement disorder? Update on the worldwide prevalence of essential tremor. Mov Disord 25:534–541

    Article  PubMed  Google Scholar 

  2. Muthuraman M, Groppa S, Deuschl G (2016) Cerebello-cortical networks in orthostatic tremor. Brain 139:2104–2106

    Article  PubMed  Google Scholar 

  3. Groppa S, Herzog J, Falk D, Riedel C, Deuschl G, Volkmann J (2014) Physiological and anatomical decomposition of subthalamic neurostimulation effects in essential tremor. Brain 137:109–121

    Article  PubMed  Google Scholar 

  4. Helmich RC (2017) The cerebral basis of Parkinsonian tremor: a network perspective. Mov Disord 9:27224

    Google Scholar 

  5. Deuschl G, Raethjen J, Baron R, Lindemann M, Wilms H, Krack P (2000) The pathophysiology of parkinsonian tremor: a review. J Neurol 247(Suppl 5):V33–V48

    Article  PubMed  Google Scholar 

  6. Deuschl G, Papengut F, Hellriegel H (2012) The phenomenology of parkinsonian tremor. Parkinsonism Relat Disord 18:70028–70021

    Google Scholar 

  7. Hallett M (2012) Parkinson’s disease tremor: pathophysiology. Parkinsonism Relat Disord. https://doi.org/10.1016/s1353-8020(11)70027-x

    Google Scholar 

  8. Deuschl G, Raethjen J, Baron R, Lindemann M, Wilms H, Krack P (2000) The pathophysiology of parkinsonian tremor: a review. J Neurol. https://doi.org/10.1007/pl00007781

    Google Scholar 

  9. Dirkx MF, den Ouden H, Aarts E, Timmer M, Bloem BR, Toni I, Helmich RC (2016) The cerebral network of Parkinson’s tremor: an effective connectivity fMRI study. J Neurosci 36:5362–5372

    Article  CAS  PubMed  Google Scholar 

  10. Gold L, Lauritzen M (2002) Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function. Proc Natl Acad Sci USA 99:7699–7704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Raethjen J, Govindan RB, Muthuraman M, Kopper F, Volkmann J, Deuschl G (2009) Cortical correlates of the basic and first harmonic frequency of Parkinsonian tremor. Clin Neurophysiol 120:1866–1872

    Article  PubMed  Google Scholar 

  12. Christakos CN, Erimaki S, Anagnostou E, Anastasopoulos D (2009) Tremor-related motor unit firing in Parkinson’s disease: implications for tremor genesis. J Physiol 587:4811–4827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hirschmann J, Hartmann CJ, Butz M, Hoogenboom N, Ozkurt TE, Elben S, Vesper J, Wojtecki L, Schnitzler A (2013) A direct relationship between oscillatory subthalamic nucleus-cortex coupling and rest tremor in Parkinson’s disease. Brain 136:3659–3670

    Article  PubMed  Google Scholar 

  14. Groppa S, Schlaak BH, Munchau A, Werner-Petroll N, Dunnweber J, Baumer T, van Nuenen BF, Siebner HR (2012) The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route. Hum Brain Mapp 33:419–430

    Article  PubMed  Google Scholar 

  15. Timmermann L, Gross J, Dirks M, Volkmann J, Freund HJ, Schnitzler A (2003) The cerebral oscillatory network of parkinsonian resting tremor. Brain 126:199–212

    Article  PubMed  Google Scholar 

  16. Hirschmann J, Butz M, Hartmann CJ, Hoogenboom N, Ozkurt TE, Vesper J, Wojtecki L, Schnitzler A (2016) Parkinsonian rest tremor is associated with modulations of subthalamic high-frequency oscillations. Mov Disord 31:1551–1559

    Article  CAS  PubMed  Google Scholar 

  17. Reck C, Florin E, Wojtecki L, Krause H, Groiss S, Voges J, Maarouf M, Sturm V, Schnitzler A, Timmermann L (2009) Characterisation of tremor-associated local field potentials in the subthalamic nucleus in Parkinson’s disease. Eur J Neurosci 29:599–612

    Article  PubMed  Google Scholar 

  18. Hurtado JM, Gray CM, Tamas LB, Sigvardt KA (1999) Dynamics of tremor-related oscillations in the human globus pallidus: a single case study. Proc Natl Acad Sci USA 96:1674–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Benninger DH, Thees S, Kollias SS, Bassetti CL, Waldvogel D (2009) Morphological differences in Parkinson’s disease with and without rest tremor. J Neurol 256:256–263

    Article  PubMed  Google Scholar 

  20. Raethjen J, Lindemann M, Schmaljohann H, Wenzelburger R, Pfister G, Deuschl G (2000) Multiple oscillators are causing parkinsonian and essential tremor. Mov Disord 15:84–94

    Article  CAS  PubMed  Google Scholar 

  21. Muthuraman M, Heute U, Arning K, Anwar AR, Elble R, Deuschl G, Raethjen J (2012) Oscillating central motor networks in pathological tremors and voluntary movements. What makes the difference? Neuroimage 60:1331–1339

    Article  CAS  PubMed  Google Scholar 

  22. Bhidayasiri R (2005) Differential diagnosis of common tremor syndromes. Postgrad Med J 81:756–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Duval C (2006) Rest and postural tremors in patients with Parkinson’s disease. Brain Res Bull 70:44–48

    Article  PubMed  Google Scholar 

  24. Duval C, Sadikot AF, Panisset M (2004) The detection of tremor during slow alternating movements performed by patients with early Parkinson’s disease. Exp Brain Res 154:395–398

    Article  PubMed  Google Scholar 

  25. Raethjen J, Pohle S, Govindan RB, Morsnowski A, Wenzelburger R, Deuschl G (2005) Parkinsonian action tremor: interference with object manipulation and lacking levodopa response. Exp Neurol 194:151–160

    Article  CAS  PubMed  Google Scholar 

  26. Hopfner F, Deuschl G (2017) Is essential tremor a single entity? Eur J Neurol 14:13454

    Google Scholar 

  27. Helmich RC, Toni I, Deuschl G, Bloem BR (2013) The pathophysiology of essential tremor and Parkinson’s tremor. Curr Neurol Neurosci Rep 13:1–10

    Article  CAS  Google Scholar 

  28. Klein JC, Lorenz B, Kang JS, Baudrexel S, Seifried C, van de Loo S, Steinmetz H, Deichmann R, Hilker R (2011) Diffusion tensor imaging of white matter involvement in essential tremor. Hum Brain Mapp 32:896–904

    Article  PubMed  Google Scholar 

  29. Strafella A, Ashby P, Munz M, Dostrovsky JO, Lozano AM, Lang AE (1997) Inhibition of voluntary activity by thalamic stimulation in humans: relevance for the control of tremor. Mov Disord 12:727–737

    Article  CAS  PubMed  Google Scholar 

  30. Bekar L, Libionka W, Tian G‑F, Xu Q, Torres A, Wang X, Lovatt D, Williams E, Takano T, Schnermann J (2008) Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat Med 14:75–80

    Article  CAS  PubMed  Google Scholar 

  31. Schnitzler A, Munks C, Butz M, Timmermann L, Gross J (2009) Synchronized brain network associated with essential tremor as revealed by magnetoencephalography. Mov Disord 24:1629–1635

    Article  PubMed  Google Scholar 

  32. Muthuraman M, Deuschl G, Anwar AR, Mideksa KG, von Helmolt F, Schneider SA (2015) Essential and aging-related tremor: differences of central control. Mov Disord 30:1673–1680

    Article  PubMed  Google Scholar 

  33. Gallea C, Popa T, García-Lorenzo D, Valabregue R, Legrand A‑P, Marais L, Degos B, Hubsch C, Fernández-Vidal S, Bardinet E (2015) Intrinsic signature of essential tremor in the cerebello-frontal network. Brain 138:2920–2933

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sharifi S, Nederveen AJ, Booij J, van Rootselaar AF (2014) Neuroimaging essentials in essential tremor: a systematic review. Neuroimage Clin 5:217–231

    Article  PubMed  PubMed Central  Google Scholar 

  35. Handforth A (2016) Linking essential tremor to the cerebellum-animal model evidence. Cerebellum 15:285–298

    Article  PubMed  Google Scholar 

  36. Louis ED, Hernandez N, Dyke JP, Ma RE, Dydak U (2017) In vivo dentate nucleus gamma-aminobutyric acid concentration in essential tremor vs. controls. Cerebellum. https://doi.org/10.1007/s12311-017-0891-4

    PubMed Central  Google Scholar 

  37. Miwa H, Kubo T, Suzuki A, Kihira T, Kondo T (2006) A species-specific difference in the effects of harmaline on the rodent olivocerebellar system. Brain Res 12:94–101

    Article  Google Scholar 

  38. Salter MW, Beggs S (2014) Sublime microglia: expanding roles for the guardians of the CNS. Cell 158:15–24

    Article  CAS  PubMed  Google Scholar 

  39. Do GK, Min KO, Kim KY, Sim KC, Nam KW, Koo JP, Park JH, Moon OK, Yu SH, Kim GY (2010) Effects of motor skill learning and treadmill exercise on motor performance and synaptic plasticity in harmaline induced cerebellar injury model of rat. J Int Acad Phys Ther Res 1:91–98

    Google Scholar 

  40. Muthuraman M, Hossen A, Heute U, Deuschl G, Raethjen J (2011) A new diagnostic test to distinguish tremulous Parkinson’s disease from advanced essential tremor. Mov Disord 26:1548–1552

    Article  PubMed  Google Scholar 

  41. Nistico R, Pirritano D, Salsone M, Novellino F, Del Giudice F, Morelli M, Trotta M, Bilotti G, Condino F, Cherubini A, Valentino P, Quattrone A (2011) Synchronous pattern distinguishes resting tremor associated with essential tremor from rest tremor of Parkinson’s disease. Parkinsonism Relat Disord 17:30–33

    Article  CAS  PubMed  Google Scholar 

  42. Minen MT, Louis ED (2008) Emergence of Parkinson’s disease in essential tremor: a study of the clinical correlates in 53 patients. Mov Disord 23:1602–1605

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rocca WA, Bower JH, Ahlskog JE, Elbaz A, Grossardt BR, McDonnell SK, Schaid DJ, Maraganore DM (2007) Increased risk of essential tremor in first-degree relatives of patients with Parkinson’s disease. Mov Disord 22:1607–1614

    Article  PubMed  Google Scholar 

  44. Vetrugno R, D’Angelo R, Alessandria M, Mascalchi M, Montagna P (2010) Orthostatic tremor in a left midbrain lesion. Mov Disord 25:793–795

    Article  PubMed  Google Scholar 

  45. Jones L, Bain PG (2011) Orthostatic tremor. Pract Neurol 11:240–243

    Article  PubMed  Google Scholar 

  46. Wu Y, Ashby P, Lang A (2001) Orthostatic tremor arises from an oscillator in the posterior fossa. Mov Disord 16:272–279

    Article  CAS  PubMed  Google Scholar 

  47. Yarrow K, Brown P, Gresty MA, Bronstein AM (2001) Force platform recordings in the diagnosis of primary orthostatic tremor. Gait Posture 13:27–34

    Article  CAS  PubMed  Google Scholar 

  48. Fung V, Sauner D, Day B (2001) A dissociation between subjective and objective unsteadiness in primary orthostatic tremor. Brain 124:322–330

    Article  CAS  PubMed  Google Scholar 

  49. Katzenschlager R, Costa D, Gerschlager W, O’Sullivan J, Zijlmans J, Gacinovic S, Pirker W, Wills A, Bhatia K, Lees AJ (2003) [123I]-FP-CIT-SPECT demonstrates dopaminergic deficit in orthostatic tremor. Ann Neurol 53:489–496

    Article  PubMed  Google Scholar 

  50. Muthuraman M, Hellriegel H, Paschen S, Hofschulte F, Reese R, Volkmann J, Witt K, Deuschl G, Raethjen J (2013) The central oscillatory network of orthostatic tremor. Mov Disord 28:1424–1430

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Groppa.

Ethics declarations

Interessenkonflikt

M. Muthuraman, A. Schnitzler und S. Groppa geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthuraman, M., Schnitzler, A. & Groppa, S. Pathophysiologie des Tremors. Nervenarzt 89, 408–415 (2018). https://doi.org/10.1007/s00115-018-0490-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-018-0490-8

Schlüsselwörter

Keywords

Navigation