Skip to main content
Log in

Experimentelle Ansätze zur Therapie des ischämischen Schlaganfalls

Experimental therapy approaches for ischemic stroke

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Der ischämische Schlaganfall ist in Deutschland – ähnlich wie in den meisten anderen Industrieländern – die häufigste Ursache für eine bleibende Behinderung und die dritthäufigste Todesursache. Da ischämische Schlaganfälle mit dem Alter häufiger auftreten, muss aufgrund der demographischen Entwicklung mit einer Zunahme dieser Erkrankung gerechnet werden. Trotz intensiver Bemühungen auf klinischer und experimenteller Ebene fußt die Therapie des ischämischen Schlaganfalls nach wie vor auf allgemein-intensivmedizinischen Verfahren und der Reperfusionstherapie mit rekombinantem Gewebeplasminogenaktivator (rtPA). Die rtPA-Behandlung ist allerdings nicht für alle Patienten geeignet und außerdem aufgrund des zunehmenden Blutungsrisikos auf ein therapeutisches Fenster von 4,5 h beschränkt. Daher besteht ein großer Bedarf an neuen Therapieoptionen zur Behandlung zerebraler Ischämien. Diese Übersichtarbeit diskutiert neue experimentelle Behandlungsprinzipien für den ischämischen Schlaganfall, die möglicherweise klinisches Potenzial besitzen. Der besondere Schwerpunkt liegt hierbei auf neuroprotektiven und immunologischen Ansätzen.

Summary

In Germany, as in most other industrialized countries, ischemic stroke is the leading cause of disability and the third leading cause of death. As the incidence of ischemic stroke increases with age it is expected that this problem will become even more urgent in an aging society. Despite significant research efforts on the clinical as well as on the experimental level, treatment of ischemic stroke is still based on general intensive care measures and on reperfusion therapy with recombinant tissue plasminogen activator (rtPA); however, rtPA is not suitable for a wide range of patients and is restricted to a therapeutic window of 4.5 h due to an increasing risk of bleeding. Accordingly, novel therapeutic options for ischemic stroke are urgently need. The current review discusses novel experimental therapeutic principles for ischemic stroke which may have clinical potential. The main topics are neuroprotection and strategies addressing the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Baron A, Montagne A, Casse F et al (2010) NR2D-containing NMDA receptors mediate tissue plasminogen activator-promoted neuronal excitotoxicity. Cell Death Differ 17:860–871

    Article  PubMed  CAS  Google Scholar 

  2. Becker KJ, Kalil AJ, Tanzi P et al (2011) Autoimmune responses to the brain after stroke are associated with worse outcome. Stroke 42:2763–2769

    Article  PubMed  CAS  Google Scholar 

  3. Belanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738

    Article  PubMed  CAS  Google Scholar 

  4. Berthet C, Lei H, Thevenet J et al (2009) Neuroprotective role of lactate after cerebral ischemia. J Cereb Blood Flow Metab 29:1780–1789

    Article  PubMed  CAS  Google Scholar 

  5. Borsello T, Clarke PG, Hirt L et al (2003) A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 9:1180–1186

    Article  PubMed  CAS  Google Scholar 

  6. Brait VH, Arumugam TV, Drummond GR, Sobey CG (2012) Importance of T lymphocytes in brain injury, immunodeficiency, and recovery after cerebral ischemia. J Cereb Blood Flow Metab 32:598–611

    Article  PubMed  CAS  Google Scholar 

  7. Chamorro A, Meisel A, Planas AM et al (2012) The immunology of acute stroke. Nat Rev Neurol [Epub ahead of print]

  8. Cook DJ, Teves L, Tymianski M (2012) Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature 483:213–217

    Article  PubMed  CAS  Google Scholar 

  9. Czech B, Pfeilschifter W, Mazaheri-Omrani N et al (2009) The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia. Biochem Biophys Res Commun 389:251–256

    Article  PubMed  CAS  Google Scholar 

  10. Dalkara T, Yoshida T, Irikura K, Moskowitz MA (1994) Dual role of nitric oxide in focal cerebral ischemia. Neuropharmacology 33:1447–1452

    Article  PubMed  CAS  Google Scholar 

  11. Dirnagl U (2006) Bench to bedside: the quest for quality in experimental stroke research. J Cereb Blood Flow Metab 26:1465–1478

    Article  PubMed  Google Scholar 

  12. Dirnagl U, Klehmet J, Braun JS et al (2007) Stroke-induced immunodepression: experimental evidence and clinical relevance. Stroke 38:770–773

    Article  PubMed  Google Scholar 

  13. Fisher M, Feuerstein G, Howells DW et al (2009) Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 40:2244–2250

    Article  PubMed  Google Scholar 

  14. Gelderblom M, Leypoldt F, Steinbach K et al (2009) Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40:1849–1857

    Article  PubMed  Google Scholar 

  15. Gertz K, Priller J, Kronenberg G et al (2006) Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow. Circ Res 99:1132–1140

    Article  PubMed  CAS  Google Scholar 

  16. Ginsberg MD (2008) Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 55:363–389

    Article  PubMed  CAS  Google Scholar 

  17. Huang Z, Huang PL, Ma J et al (1996) Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab 16:981–987

    Article  PubMed  CAS  Google Scholar 

  18. Huang Z, Huang PL, Panahian N et al (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265:1883–1885

    Article  PubMed  CAS  Google Scholar 

  19. Jones N (2011) Stroke: Disruption of the nNOS-PSD-95 complex is neuroprotective in models of cerebral ischemia. Nat Rev Neurol 7:61

    Article  PubMed  Google Scholar 

  20. Jullienne A, Montagne A, Orset C et al (2011) Selective inhibition of GluN2D-containing N-methyl-D-aspartate receptors prevents tissue plasminogen activator-promoted neurotoxicity both in vitro and in vivo. Mol Neurodegener 6:68

    Article  PubMed  CAS  Google Scholar 

  21. Kahles T, Brandes RP (2012) NADPH oxidases as therapeutic targets in ischemic stroke. Cell Mol Life Sci 69:2345–2363

    Article  PubMed  CAS  Google Scholar 

  22. Kahles T, Kohnen A, Heumueller S et al (2010) NADPH oxidase Nox1 contributes to ischemic injury in experimental stroke in mice. Neurobiol Dis 40:185–192

    Article  PubMed  CAS  Google Scholar 

  23. Kaur J, Zhao Z, Klein GM et al (2004) The neurotoxicity of tissue plasminogen activator? J Cereb Blood Flow Metab 24:945–963

    Article  PubMed  CAS  Google Scholar 

  24. Kleinschnitz C, Grund H, Wingler K et al (2010a) Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol 8:e1000479

    Article  PubMed  Google Scholar 

  25. Kleinschnitz C, Schwab N, Kraft P et al (2010b) Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood 115:3835–3842

    Article  PubMed  CAS  Google Scholar 

  26. Liesz A, Sun L, Zhou W et al (2011a) FTY720 reduces post-ischemic brain lymphocyte influx but does not improve outcome in permanent murine cerebral ischemia. PLoS One 6:e21312

    Article  PubMed  CAS  Google Scholar 

  27. Liesz A, Suri-Payer E, Veltkamp C et al (2009) Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 15:192–199

    Article  PubMed  CAS  Google Scholar 

  28. Liesz A, Zhou W, Mracsko E et al (2011b) Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain 134:704–720

    Article  PubMed  Google Scholar 

  29. Macrez R, Obiang P, Gauberti M et al (2011) Antibodies preventing the interaction of tissue-type plasminogen activator with N-methyl-D-aspartate receptors reduce stroke damages and extend the therapeutic window of thrombolysis. Stroke 42:2315–2322

    Article  PubMed  CAS  Google Scholar 

  30. Magnus T, Wiendl H, Kleinschnitz C (2012) Immune mechanisms of stroke. Curr Opin Neurol 25:334–340

    Article  PubMed  CAS  Google Scholar 

  31. Mombaerts P, Iacomini J, Johnson RS et al (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68:869–877

    Article  PubMed  CAS  Google Scholar 

  32. Nieswandt B, Kleinschnitz C, Stol G (2011) Ischaemic stroke: a thrombo-inflammatory disease? J Physiol 589:4115–4123

    PubMed  CAS  Google Scholar 

  33. Pfeilschifter W, Czech-Zechmeister B, Sujak M et al (2011) Treatment with the immunomodulator FTY720 does not promote spontaneous bacterial infections after experimental stroke in mice. Exp Transl Stroke Med 3:2

    Article  PubMed  CAS  Google Scholar 

  34. Planas AM, Gomez-Choco M, Urra X et al (2012) Brain-derived antigens in lymphoid tissue of patients with acute stroke. J Immunol 188:2156–2163

    Article  PubMed  CAS  Google Scholar 

  35. Prinz V, Endres M (2011) Statins and stroke: prevention and beyond. Curr Opin Neurol 24:75–80

    Article  PubMed  CAS  Google Scholar 

  36. Ren X, Akiyoshi K, Vandenbark AA et al (2011) CD4+FoxP3+ regulatory T-cells in cerebral ischemic stroke. Metab Brain Dis 26:87–90

    Article  PubMed  Google Scholar 

  37. Sena ES, Worp HB van der, Bath PM et al (2010) Publication bias in reports of animal stroke studies leads to major overstatement of efficacy. PLoS Biol 8:e1000344

    Article  PubMed  Google Scholar 

  38. Shichita T, Hasegawa E, Kimura A et al (2012) Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat Med [Epub ahead of print]

  39. Shichita T, Sugiyama Y, Ooboshi H et al (2009) Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med 15:946–950

    Article  PubMed  CAS  Google Scholar 

  40. Siesjo BK, Katsura K, Mellergard P et al (1993) Acidosis-related brain damage. Prog Brain Res 96:23–48, 23–48

    PubMed  CAS  Google Scholar 

  41. Steward O, Popovich PG, Dietrich WD, Kleitman N (2012) Replication and reproducibility in spinal cord injury research. Exp Neurol 233:597–605

    Article  PubMed  Google Scholar 

  42. Stoll G, Jander S, Schroeter M (1998) Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol 56:149–171

    Article  PubMed  CAS  Google Scholar 

  43. Terpolilli NA, Kim SW, Thal SC et al (2012a) Inhalation of nitric oxide prevents ischemic brain damage in experimental stroke by selective dilatation of collateral arterioles. Circ Res 110:727–738

    Article  PubMed  CAS  Google Scholar 

  44. Terpolilli NA, Moskowitz MA, Plesnila N (2012b) Nitric oxide: considerations for the treatment of ischemic stroke. J Cereb Blood Flow Metab [Epub ahead of print]

  45. Tuttolomondo A, Di Sciacca R, Di Raimondo D et al (2009) Neuron protection as a therapeutic target in acute ischemic stroke. Curr Top Med Chem 9:1317–1334

    Article  PubMed  CAS  Google Scholar 

  46. Walder CE, Green SP, Darbonne WC et al (1997) Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28:2252–2258

    Article  PubMed  CAS  Google Scholar 

  47. Wei Y, Yemisci M, Kim HH et al (2011) Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann Neurol 69:119–129

    Article  PubMed  CAS  Google Scholar 

  48. Wiegler K, Bonny C, Coquoz D, Hirt L (2008) The JNK inhibitor XG-102 protects from ischemic damage with delayed intravenous administration also in the presence of recombinant tissue plasminogen activator. Cerebrovasc Dis 26:360–366

    Article  PubMed  CAS  Google Scholar 

  49. Wyss MT, Jolivet R, Buck A et al (2011) In vivo evidence for lactate as a neuronal energy source. J Neurosci 31:7477–7485

    Article  PubMed  CAS  Google Scholar 

  50. Yemisci M, Gursoy-Ozdemir Y, Vural A et al (2009) Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med 15:1031–1037

    Article  PubMed  CAS  Google Scholar 

  51. Yilmaz G, Arumugam TV, Stokes KY, Granger DN (2006) Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 113:2105–2112

    Article  PubMed  Google Scholar 

  52. Zhang L, Zhang ZG, Chop M (2012) The neurovascular unit and combination treatment strategies for stroke. Trends Pharmacol Sci [Epub ahead of print]

  53. Zhou L, Li F, Xu HB et al (2010) Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat Med 16:1439–1443

    Article  PubMed  CAS  Google Scholar 

Download references

Danksagung

Einige der hier referierten Arbeiten wurden durch die Deutsche Forschungsgemeinschaft (DFG), SFB 688 (TP A13 und B1) und DFG KL2323/6-1 unterstützt.

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seinen Koautor an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Kleinschnitz or N. Plesnila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinschnitz, C., Plesnila, N. Experimentelle Ansätze zur Therapie des ischämischen Schlaganfalls. Nervenarzt 83, 1275–1281 (2012). https://doi.org/10.1007/s00115-012-3536-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-012-3536-3

Schlüsselwörter

Keywords

Navigation