Skip to main content
Log in

Critical-illness-Myopathie und -Neuropathie (CRIMYN)

Elektroneurographische Klassifikation

Critical illness myopathy and neuropathy (CRIMYN)

Electroneurographic classification

  • Originalien
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

In der vorliegenden Studie wurden verschiedene Schweregrade und Schädigungsmuster elektroneurographischer Veränderungen anhand einer Clusteranalyse bei Patienten mit Critical-illness-Myopathie und -Neuropathie (CRIMYN) erfasst.

Methode

Es wurden 30 Patienten mit Sepsis/SIRS prospektiv elektroneurographisch untersucht. Als Referenz dienten 63 gesunde Probanden. Bei den Patienten wurden ab der 1. Woche wöchentlich und nach einem halben Jahr die Neurographie an 6 motorischen und an 4 sensiblen Nerven durchgeführt. Aus den Differenzen der erfassten 20 Parameter (jeweils Amplituden und Nervenleitgeschwindigkeiten) zu altersentsprechenden Normwerten wurden mittels einer Clusteranalyse verschiedene Schädigungsmuster klassifiziert.

Ergebnisse

Insgesamt ergaben sich bei der parallelen Betrachtung der neurographischen Parameter 4 verschiedene Schweregrade (Cluster). Cluster I: normale sensible und motorische Parameter, enthält alle Probanden und 3 Patienten. Cluster II: leichte beinbetonte motorische Schädigung, 5 Patienten. Cluster III: mäßige sensomotorische Schädigung an oberen und unteren Extremitäten, 12 Patienten. Cluster IV: schwere sensomotorische Schädigung an allen Extremitäten, 10 Patienten.

Schlussfolgerung

Im Rahmen elektroneurographischer Verlaufsuntersuchungen bei Sepsispatienten zeigten sich 4 verschiedene Schädigungsprofile mit unterschiedlichem Schweregrad. Damit ist eine Differenzierung der Schwere neuromuskulärer Störungen als weiteres Organversagen bei der Sepsis möglich. Diese lässt prognostische Aussagen zu und dient als Grundlage für eine Korrelation mit weiteren klinischen und paraklinischen Sepsisparametern.

Summary

Background

Critical Illness Myopathy and Neuropathy (CRIMYN) frequently coexist with severe sepsis and is associated with prolonged weaning from mechanical ventilation and prolonged ICU length of stay. We aimed to classify different levels as well as patterns of impairment with regard to electrophysiological disturbances in CRIMYN patients by cluster analysis.

Methods

A total of 30 patients with sepsis/SIRS were studied prospectively. Motor and sensory conduction studies were performed from six motor and four sensory nerves on a weekly basis from admission until discharge and finally after 6 months. A control group of 63 healthy persons was examined simultaneously using the same criteria.

Different patterns of electrophysiological disturbances were classified by cluster analysis based on differences to reference values of 20 parameters, compound muscle action potential (CMAP), sensory nerve action potential (SNAP) and motor and sensor conduction velocity (NCV).

Results

Four different clusters were identified: cluster 1 showing normal values for CMAP, SNAP and NCV in all nerves (3 patients and all test persons), cluster 2 showing pathological values for CMAP in the lower extremities and the other parameters were normal (5 patients), cluster 3 showing moderately pathological values for CMAP, SNAP and sensory NCV in upper and lower extremities and motor NCV in lower extremities (12 patients) and cluster 4 showing severe disturbances of CMAP, SNAP and NCV in upper and lower extremities (10 patients).

Conclusion

A total of four different clusters of electrophysiological impairment can be identified in patients with sepsis/SIRS, which enables further differentiation of the severity of neuromuscular disturbances in sepsis-associated organ failure. This might be useful as a prognostic parameter and can be correlated with additional clinical and paraclinical parameters related to sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Bauer HU, Villmann T (1997) Growing a hypercubical output space in a self-organizing feature map. IEEE Trans Neural Netw 8:218–226

    Article  PubMed  CAS  Google Scholar 

  2. Baum P, Bercker S, Günther P et al (2009) Eletkromyo- und neurographische Untersuchungen bei Sepsis-/SIRS-Patienten zur Verlaufsbeurteilung einer Critical-Illness-Myopathie und -Neuropathie (CRIMYN). Akt Neurol 36:11–116

    Google Scholar 

  3. Bednarik J, Lukas Z, Vondracek P (2003) Critical illness polyneuromyopathy: the electrophysiological components of a complex entity. Intensiv Care Med 29:1505–1514

    Article  Google Scholar 

  4. Bednarik J, Vondracek P, Dusek L et al (2005) Risk factors for critical illness polyneuromyopathy. J Neurol 252:343–351

    Article  PubMed  CAS  Google Scholar 

  5. Bird SJ, Rich MM (2002) Critical illness myopathy and polyneuropathy. Curr Neurol Neurosci Rep 2:527–533

    Article  PubMed  Google Scholar 

  6. Bolton CF (1987) Electrophysiologic studies of critically ill patients. Muscle Nerve 10:129–135

    Article  PubMed  CAS  Google Scholar 

  7. Bolton CF (2005) Neuromuscular manifestations of critical illness. Muscle Nerve 32:140–163

    Article  PubMed  Google Scholar 

  8. Bolton CF, Laverty DA, Brown JD et al (1986) Critically ill polyneuropathy: electrophysiological studies and differentiation from Guillain-Barre syndrome. J Neurol Neurosurg Psychiatry 49:563–573

    Article  PubMed  CAS  Google Scholar 

  9. Bolton CF, Young GB, Zochodne DW (1993) The neurological complications of sepsis. Ann Neurol 33:94–100

    Article  PubMed  CAS  Google Scholar 

  10. Bone RC, Balk RA, Cerra FB et al (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM consensus conference committee. American college of chest physicians/society of critical care medicine. Chest 101:1644–1655

    Article  PubMed  CAS  Google Scholar 

  11. De Jonghe B, Bastuji-Garin S, Sharshar T et al (2004) Does ICU-acquired paresis lengthen weaning from mechanical ventilation? Intensiv Care Med 30:1117–1121

    Article  Google Scholar 

  12. Garnacho-Montero J, Amaya-Villar R, Garcia-Garmendia JL et al (2005) Effect of critical illness polyneuropathy on the withdrawal from mechanical ventilation and the length of stay in septic patients. Crit Care Med 33:349–354

    Article  PubMed  Google Scholar 

  13. Guarneri B, Bertolini G, Latronico N (2008) Long-term outcome in patients with critical illness myopathy or neuropathy: the Italian multicentre CRIMYNE study. J Neurol Neurosurg Psychiatry 79:838–841

    Article  PubMed  CAS  Google Scholar 

  14. Gutmann L, Hopf HC (1998) Critical-Illness-Neuropathie und -Myopathie. Akt Neurol 25:337–340

    Article  Google Scholar 

  15. Hund E (2001) Neurological complications of sepsis: critical illness polyneuropathy and myopathy. J Neurol 248:929–934

    Article  PubMed  CAS  Google Scholar 

  16. Kohonen T (1997) Self-organizing maps. Neural network world. Sec ext edn. Springer, Berlin Heidelberg

  17. Latronico N (2003) Neuromuscular alterations in the critically ill patient: critical illness myopathy, critical illness neuropathy, or both? Intensiv Care Med 29:1411–1413

    Article  Google Scholar 

  18. Latronico N, Bertolini G, Guarneri B et al (2007) Simplified electrophysiological evaluation of peripheral nerves in critically ill patients: the Italian multi-centre CRIMYNE study. Crit Care 11:R11

    Article  PubMed  Google Scholar 

  19. Latronico N, Fenzi F, Recupero D et al (1996) Critical illness myopathy and neuropathy. Lancet 347:1579–1582

    Article  PubMed  CAS  Google Scholar 

  20. Latronico N, Peli E, Botteri M (2005) Critical illness myopathy and neuropathy. Curr Opin Crit Care 11:126–132

    Article  PubMed  Google Scholar 

  21. Leijten FS, Harinck-De Weerd JE, Poortvliet DC et al (1995) The role of polyneuropathy in motor convalescence after prolonged mechanical ventilation. JAMA 274:1221–1225

    Article  PubMed  CAS  Google Scholar 

  22. Mohr M, Englisch L, Roth A et al (1997) Effects of early treatment with immunoglobulin on critical illness polyneuropathy following multiple organ failure and gram-negative sepsis. Intensiv Care Med 23:1144–1149

    Article  CAS  Google Scholar 

  23. Tennila A, Salmi T, Pettila V et al (2000) Early signs of critical illness polyneuropathy in ICU Patients with systemic inflammatory response syndrome or sepsis. Intensiv Care Med 26:1360–1363

    Article  CAS  Google Scholar 

  24. Trojaborg W, Weimer LH, Hays AP (2001) Electrophysiologic studies in critical illness associated weakness: myopathy or neuropathy – a reappraisal. Clin Neurophysiol 112:1586–1593

    Article  PubMed  CAS  Google Scholar 

  25. Villmann T, Hermann W, Geyer M (2000) Variants of self-organizing maps for data mining and data visualisation in medicine. Neural Netw World 10:751–762

    Google Scholar 

  26. Witt NJ, Zochodne DW, Bolton CF et al (1991) Peripheral nerve function in sepsis and multiple organ failure. Chest 99:176–184

    Article  PubMed  CAS  Google Scholar 

  27. Zifko UA, Zipko HT, Bolton CF (1998) Clinical and electrophysiological findings in critical illness polyneuropathy. J Neurol Sci 159:186–193

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Baum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baum, P., Bercker, S., Villmann, T. et al. Critical-illness-Myopathie und -Neuropathie (CRIMYN). Nervenarzt 82, 468–474 (2011). https://doi.org/10.1007/s00115-010-3094-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-010-3094-5

Schlüsselwörter

Keywords

Navigation