Global population trends in shorebirds: migratory behaviour makes species at risk

Abstract

Linking population trends to species’ traits is informative for the detection of the most important threatening factors and for assessing the effectiveness of conservation measures. Although some previous studies performed such an analysis at local to continental scales, the global-scale focus is the most relevant for conservation of the entire species. Here we evaluate information on global population trends of shorebirds, a widely distributed and ecologically diversified group, where some species connect different parts of the world by migration, while others are residents. Nowadays, shorebirds face rapid environmental changes caused by various human activities and climate change. Numerous signs of regional population declines have been recently reported in response to these threats. The aim of our study was to test whether breeding and non-breeding habitats, migratory behaviour (migrants vs. residents) and migration distance, breeding latitude, generation time and breeding range size mirror species’ global population trends. We found that a majority of shorebird species have declined globally. After accounting for the influence of traits and species taxonomy, linear mixed-effects models showed that populations of migratory shorebirds decreased more than populations of residents. Besides that, declines were more frequent for species breeding at high latitudes of the Northern Hemisphere, but these patterns did not hold after excluding the non-migratory species. Our findings suggest that factors linked to migration, such as habitat loss as well as deterioration at stop-over or wintering sites and a pronounced climate change impact at high latitudes, are possible drivers of the observed worldwide population decreases.

This is a preview of subscription content, access via your institution.

Fig. 1

Data Availability

All data are included in Table 1 in Online Resource 1.

References

  1. Aharon-Rotman Y, Soloviev M, Minton C, Tomkovich P, Hassell C, Klaassen M (2014) Loss of periodicity in breeding success of waders links to changes in lemming cycles in Arctic ecosystems. Oikos 124:861–870. https://doi.org/10.1111/oik.01730

    Article  Google Scholar 

  2. Amano T, Szekely T, Sandel B, Nagy S, Mundkur T, Langendoen T, Blanco D, Soykan CU, Sutherland WJ (2018) Successful conservation of global waterbird populations depends on effective governance. Nature 553:199–202. https://doi.org/10.1038/nature25139

    CAS  Article  PubMed  Google Scholar 

  3. Andres BA, Smith PA, Morrison RG, Gratto-Trevor CL, Brown SC, Friis CA (2012) Population estimates of North American shorebirds, 2012. Wader Study Group Bull 119:178–194

    Google Scholar 

  4. Bartoń K (2018) MuMIn, multi-model inference. R package version 1.42.1. https://CRAN.R-project.org/package=MuMIn

  5. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  6. Battley PF, Warnock N, Tibbitts TL, Gill RE, Piersma T, Hassell CJ, Douglas DC, Mulcahy DM, Gartell BD, Schuckard R, Melville DS, Riegen AC (2012) Contrasting extreme long-distance migration patterns in bar-tailed godwits Limosa lapponica. J Avian Biol 43:21–32. https://doi.org/10.1111/j.1600-048X.2011.05473.x

    Article  Google Scholar 

  7. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377. https://doi.org/10.1111/j.1461-0248.2011.01736.x

    Article  PubMed  PubMed Central  Google Scholar 

  8. BirdLife International (2020) IUCN Red List for birds. http://www.birdlife.org/datazone/species.

  9. BirdLife International, NatureServe (2014) Bird species distribution maps of the world. Bird Life International and Nature Serve

  10. Boyd C, DeMaster DP, Waples RS, Ward EJ, Taylor BL (2017) Consistent extinction risk assessment under the US Endangered Species Act. Conserv Lett 10:328–336. https://doi.org/10.1111/conl.12269

    Article  Google Scholar 

  11. Burnham KP, Anderson DM (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  12. Butler SJ, Boccaccio L, Gregory RD, Vorisek P, Norris K (2010) Quantifying the impact of land-use change to European farmland bird populations. Agric Ecosyst Environ 137:348–357. https://doi.org/10.1016/j.agee.2010.03.005

    Article  Google Scholar 

  13. Clemens RS, Rogers DI, Hansen BD, Gosbell K, Minton CDT, Straw P, Bamford M, Woehler EJ, Milton DA, Weston MA, Venables W, Weller D, Hassell C, Rutherford W, Onton K, Herrod A, Studds CE, Choi C-Y, Dhanjal-Adams KL, Skilleter G, Fuller RA (2016) Continental-scale decreases in shorebird populations in Australia. Emu 116:119–135. https://doi.org/10.1071/MU15056

    Article  Google Scholar 

  14. Colwell MA (2010) Shorebird ecology: conservation and management. University of California Press, Berkeley

    Google Scholar 

  15. Cresswell W, Kazeh NW, Patchett R (2020) Local human population increase in the non-breeding areas of long-distance migrant bird species is only weakly associated with their declines, even for synanthropic species. Divers Distrib 26:340–351. https://doi.org/10.1111/ddi.13006

    Article  Google Scholar 

  16. del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E (2018) Handbook of the birds of the world alive. Lynx Edicions, Barcelona

    Google Scholar 

  17. Delany S, Scott D, Dodman T, Stroud D (2009) An atlas of wader populations in Africa and Western Eurasia. Wetlands International. Wageningen

  18. Descamps S, Aars J, Fuglei E, Kovacs KM, Lydersen C, Pavlova O, Pedersen AO, Ravolainen V, Strom H (2017) Climate change impacts on wildlife in a High Arctic archipelago – Svalbard, Norway. Glob Chang Biol 23:490–502. https://doi.org/10.1111/gcb.13381

    Article  PubMed  Google Scholar 

  19. Dokter AM, Farnsworth A, Fink D, Ruiz-Gutierrez V, Hochachka WM, La Sorte FA, Robinson OJ, Rosenberg KV, Kelling S (2018) Seasonal abundance and survival of North America’s migratory avifauna determined by weather radar. Nat Ecol Evol 2:1603–1609. https://doi.org/10.1038/s41559-018-0666-4

    Article  PubMed  Google Scholar 

  20. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, García Marquéz JM, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

    Article  Google Scholar 

  21. Ducatez S, Shine R (2017) Drivers of extinction risk in terrestrial vertebrates. Conserv Lett 10:186–194. https://doi.org/10.1111/conl.12258

    Article  Google Scholar 

  22. Duijns S, Niles LJ, Dey A, Aubry Y, Friis C, Koch S, Anderson AM, Smith PA (2017) Body condition explains migratory performance of a long-distance migrant. Proc R Soc B Biol Sci 284:20171374. https://doi.org/10.1098/rspb.2017.1374

    Article  Google Scholar 

  23. Finch T, Butler SJ, Franco AMA, Cresswell W (2017) Low migratory connectivity is common in long-distance migrant birds. J Anim Ecol 86:662–673. https://doi.org/10.1111/1365-2656.12635

    Article  PubMed  Google Scholar 

  24. Galbraith H, DesRochers DW, Brown S, Reed JM (2014) Predicting vulnerabilities of North American shorebirds to climate change. PLoS ONE 9:e108899. https://doi.org/10.1371/journal.pone.0108899

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Gamero A, Brotons L, Brunner A, Foppen R, Fornasari L, Gregory RD, Herrando S, Hořák D, Jiguet F, Kmecl P, Lehikoinen A, Lindström Å, Paquet J-Y, Reif J, Sirkiä PM, Škorpilová J, van Strien A, Szép T, Telenský T, Teufelbauer N, Trautmann S, van Turnhout CAM, Vermouzek Z, Vikstrøm T, Voříšek P (2017) Tracking progress toward EU biodiversity strategy targets: EU policy effects in preserving its common farmland birds. Conserv Lett 10:395–402. https://doi.org/10.1111/conl.12292

  26. Gaston KJ, Blackburn TM, Lawton JH (1997) Interspecific abundance–range size relationships: an appraisal of mechanisms. J Anim Ecol 66:579–601. https://doi.org/10.2307/5951

    Article  Google Scholar 

  27. Gill RE, Tibbitts TL, Douglas DC, Handel CM, Mulcahy DM, Gottschalck JC, Warnock N, McCaffery BJ, Battley PF, Piersma T (2009) Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier? Proc R Soc B Biol Sci 276:447–457. https://doi.org/10.1098/rspb.2008.1142

    Article  Google Scholar 

  28. Greenwood JJD (2003) The monitoring of British breeding birds: a success story for conservation science? Sci Total Environ 310:221–230. https://doi.org/10.1016/S0048-9697(02)00642-3

    CAS  Article  PubMed  Google Scholar 

  29. Hanzelka J, Horká P, Reif J (2019) Spatial gradients in country-level population trends of European birds. Divers Distrib 25:1527–1536. https://doi.org/10.1111/ddi.12945

    Article  Google Scholar 

  30. Jiguet F, Devictor V, Ottvall R, Van Turnhout C, Van der Jeugd H, Lindström Å (2010a) Bird population trends are linearly affected by climate change along species thermal ranges. Proc R Soc B Biol Sci 277:3601–3608. https://doi.org/10.1098/rspb.2010.0796

    Article  Google Scholar 

  31. Jiguet F, Gregory RD, Devictor V, Green RE, Vorisek P, Van Strien A, Couvet D (2010b) Population trends of European common birds are predicted by characteristics of their climatic niche. Glob Chang Biol 16:497–505. https://doi.org/10.1111/j.1365-2486.2009.01963.x

    Article  Google Scholar 

  32. Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108. https://doi.org/10.1016/j.tree.2003.10.013

    Article  Google Scholar 

  33. Jørgensen PS, Böhning-Gaese K, Thorup K, Tøttrup AP, Chylarecki P, Jiguet F, Lehikoinen A, Noble DG, Reif J, Schmid H, Van Turnhout CAM, Burfield IJ, Foppen R, Vorisek P, Van Strien A, Gregory RD, Rahbek K (2016) Continent-scale global change attribution in European birds-combining annual and decadal time scales. Glob Chang Biol 22:530-543. https://doi.org/10.1111/gcb.13097

  34. Kausrud KL, Mysterud A, Steen H, Vik JO, Østbye E, Cazelles B, Framstad E, Eikeset AM, Mysterud I, Solhøy T, Stenseth NC (2008) Linking climate change to lemming cycles. Nature 456:93–98. https://doi.org/10.1038/nature07442

    CAS  Article  PubMed  Google Scholar 

  35. Kleijn D, Schekkerman H, Dimmers WJ, Van Kats RJM, Melman D, Teunissen WA (2010) Adverse effects of agricultural intensification and climate change on breeding habitat quality of Black-tailed Godwits Limosa l. limosa in the Netherlands. Ibis 152:475–486. https://doi.org/10.1111/j.1474-919X.2010.01025.x

  36. Koleček J, Procházka P, Ieronymidou C, Burfield IJ, Reif J (2018) Non-breeding range size predicts the magnitude of population trends in trans-Saharan migratory passerine birds. Oikos 127:599–606. https://doi.org/10.1111/oik.04549

    Article  Google Scholar 

  37. Kubelka V (2018) Significance of predation for breeding ecology and conservation in shorebirds. Dissertation, Charles University

  38. Kubelka V, Šálek M, Tomkovich P, Végvári Z, Freckleton RP, Székely T (2018) Global pattern of nest predation is disrupted by climate change in shorebirds. Science 362:680–683. https://doi.org/10.1126/science.aat8695

    CAS  Article  PubMed  Google Scholar 

  39. Kwon E, Weiser EL, Lanctot RB, Brown SC, Gates HR, Gilchrist G, Lank DB, Liebezeit JR, Mckinnon L, Nol E, Payer DC, Rausch J, Rinella DJ, Saalfeld ST, Senner NR, Smith PA, Ward D, Wisseman RW, Sandercock BK (2019) Geographic variation in the intensity of warming and phenological mismatch between Arctic shorebirds and invertebrates. Ecol Monogr 89:e01383. https://doi.org/10.1002/ecm.1383

    Article  Google Scholar 

  40. Lank DB, Butler RW, Ireland J, Ydenberg RC (2003) Effects of predation danger on migration strategies of sandpipers. Oikos 103:303–319. https://doi.org/10.1034/j.1600-0706.2003.12314.x

    Article  Google Scholar 

  41. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1055. https://doi.org/10.1038/nature08649

    CAS  Article  PubMed  Google Scholar 

  42. Loboda S, Savage J, Buddle CM, Schmidt NM, Hoye TT (2018) Declining diversity and abundance of High Arctic fly assemblages over two decades of rapid climate warming. Ecography 41:265–277. https://doi.org/10.1111/ecog.02747

    Article  Google Scholar 

  43. Lockwood JL, Russell GJ, Gittleman JL, Daehler CC, McKinney ML, Purvis A (2002) A metric for analyzing taxonomic patterns of extinction risk. Conserv Biol 16:1137–1142. https://doi.org/10.1046/j.1523-1739.2002.01152.x

    Article  Google Scholar 

  44. Martin TG, Chadès I, Arcese P, Marra PP, Possingham HP, Norris DR (2007) Optimal conservation of migratory species. PLoS One 2:e751. https://doi.org/10.1371/journal.pone.0000751

    Article  PubMed  PubMed Central  Google Scholar 

  45. McKinnon L, Berteaux D, Bêty J (2014) Predator-mediated interactions between lemmings and shorebirds: a test of the alternative prey hypothesis. Auk 131:619–628. https://doi.org/10.1642/AUK-13-154.1

    Article  Google Scholar 

  46. Meltofte H, Piersma T, Boyd H, McCaffery B, Ganter B, Golovnyuk VV, Graham K, GrattoTrevor CL, Morrison RIG, Nol E, Rösner HU, Schamel D, Schekkerman H, Soloviev MY, Tomkovich PS, Tracy DM, Tulp I, Wennerberg L (2007) Effects of climate variation on the breeding ecology of Arctic shorebirds. Meddelelser om Grønland Biosci 59:1–48

    Google Scholar 

  47. Meltofte H, Durinck J, Jakobsen B, Nordstrøm C, Rigét FF (2019) Trends in the autumn passage numbers of Arctic and boreal waders in W Denmark 1964–2017 as a contribution to East Atlantic Flyway population trends. Ardea 107:1–15. https://doi.org/10.5253/arde.v107i2.a7

    Article  Google Scholar 

  48. Moores N, Rogers D, Kim R-H, Hassell C, Gosbell K, Kim S-A, Park M-N (2008) The 2006–2008 Saemangeum shorebird monitoring program report, Birds Korea, Busan. https://awsg.org.au/pdfs/Saemangeum-Report.pdf. Accessed 1 July 2020

  49. Mortensen LO, Schmidt NM, Hoye TT, Damgaard C, Forchhammer MC (2016) Analysis of trophic interactions reveals highly plastic response to climate change in a tri-trophic High-Arctic ecosystem. Polar Biol 39:1467–1478. https://doi.org/10.1007/s00300-015-1872-z

    Article  Google Scholar 

  50. Munro BYM (2017) What’s killing the world’s shorebirds? Nature 541:16–20. https://doi.org/10.1038/541016a

    CAS  Article  PubMed  Google Scholar 

  51. Murray NJ, Clemens RS, Phinn SR, Possingham HP, Fuller RA (2014) Tracking the rapid loss of tidal wetlands in the Yellow Sea. Front Ecol Environ 12:267–272. https://doi.org/10.1890/130260

    Article  Google Scholar 

  52. Murray NJ, Marra PP, Fuller RA, Clemens RS, Dhanjal-Adams K, Gosbell KB, Hassell CJ, Iwamura T, Melville D, Minton CDT, Riegen AC, Rogers DI, Woehler EJ, Studds CE (2017) The large-scale drivers of population declines in a long-distance migratory shorebird. Ecography 41:867–876. https://doi.org/10.1111/ecog.02957

    Article  Google Scholar 

  53. Owens IP, Bennett PM (2000) Ecological basis of extinction risk in birds: habitat loss versus human persecution and introduced predators. Proc Natl Acad Sci 97:12144–12148. https://doi.org/10.1073/pnas.200223397

    CAS  Article  PubMed  Google Scholar 

  54. Pearce-Higgins JW, Brown DJ, Douglas DJT, Alves JA, Bellio M, Bocher P, Buchanan GM, Clay RP, Conklin J, Crockford N, Dann P, Elts J, Friis C, Fuller RA, Gill JA, Gosbell K, Johnson JA, Marquez-Ferrando R, Masero JA, Melville DS, Millington S, Minton C, Mundkur T, Nol E, Pehlak H, Piersma T, Robin F, Rogers DI, Ruthrauff DR, Senner NR, Shah JN, Sheldon RD, Soloviev SA, Tomkovich PS, Verkuil YI (2017) A global threats overview for Numeniini populations: synthesising expert knowledge for a group of declining migratory birds. Bird Conserv Int 27:6–34. https://doi.org/10.1017/S0959270916000678

    Article  Google Scholar 

  55. Piersma T, Lok T, Chen Y, Hassell CJ, Yang HY, Boyle A, Slaymaker M, Chan YC, Melville DS, Zhang ZW, Ma Z (2016) Simultaneous declines in summer survival of three shorebird species signals a flyway at risk. J Appl Ecol 55:479–490. https://doi.org/10.1111/1365-2664.12582

    Article  Google Scholar 

  56. QGIS Development Team (2016) QGIS geographic information system. Open Source Geospatial Foundation

  57. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  58. Reed ET, Kardynal KJ, Horrocks JA, Hobson KA (2018) Shorebird hunting in Barbados: using stable isotopes to link the harvest at a migratory stopover site with sources of production. Condor 120:357–370. https://doi.org/10.1650/CONDOR-17-127.1

    Article  Google Scholar 

  59. Reif J (2013) Long-term trends in bird populations: a review of patterns and potential drivers in North America and Europe. Acta Ornithol 48:1–16. https://doi.org/10.3161/000164513X669955

    Article  Google Scholar 

  60. Roodbergen M, van der Werf B, Hötker H (2012) Revealing the contributions of reproduction and survival to the Europe-wide decline in meadow birds: review and meta-analysis. J Ornithol 153:53–74. https://doi.org/10.1007/s10336-011-0733-y

  61. Rosenberg KV, Dokter AM, Blancher PJ, Sauer JR, Smith AC, Smith PA, Stanton JC, Panjabi A, Helft L, Parr M, Marra PP (2019) Decline of the North American avifauna. Science 366:120–124. https://doi.org/10.1126/science.aaw1313

    CAS  Article  PubMed  Google Scholar 

  62. Runge CA, Martin TG, Possingham HP, Willis SG, Fuller RA (2014) Conserving mobile species. Front Ecol Environ 12:395–402. https://doi.org/10.1890/130237

    Article  Google Scholar 

  63. Sæther BE, Bakke Ø (2000) Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81:642–653. https://doi.org/10.1890/0012-9658(2000)081[0642:ALHVAC]2.0.CO;2

    Article  Google Scholar 

  64. Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113. https://doi.org/10.1111/j.2041-210X.2010.00012.x

    Article  Google Scholar 

  65. Schipper AM, Belmaker J, de Miranda MD, Navarro LM, Bohning-Gaese K, Costello MJ, Dornelas M, Foppen R, Hortal J, Huijbregts MAJ, Martin-Lopez B, Pettorelli N, Queiroz C, Rossberg AG, Santini L, Schiffers K, Steinmann ZJN, Visconti P, Rondinini C, Pereira HM (2016) Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010. Glob Chang Biol 22:3948–3959. https://doi.org/10.1111/gcb.13292

  66. Smith PA, McKinnon L, Meltofte H, Lanctot RB, Fox AD, Leafloor JO, Soloviev M, Franke A, Falk K, Golovatin M, Sokolov V, Sokolov A, Smith AC (2020) Status and trends of tundra birds across the circumpolar Arctic. Ambio 49:732–748. https://doi.org/10.1007/s13280-019-01308-5

    Article  PubMed  PubMed Central  Google Scholar 

  67. Studds CE, Kendall BE, Murray NJ, Wilson HB, Rogers DI, Clemens RS, Gosbell K, Hassell CJ, Jessop R, Melville DS, Milton DA, Minton CDT, Possingham HP, Riegen AC, Straw P, Woehler EJ, Fuller RA (2017) Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nat Commun 8:1e7. https://doi.org/10.1038/ncomms14895

    CAS  Article  Google Scholar 

  68. Thomas GH, Lanctot RB, Szekely T (2006) Can intrinsic factors explain population declines in North American breeding shorebirds? A comparative analysis. Anim Conserv 9:252–258. https://doi.org/10.1111/j.1469-1795.2006.00029.x

    Article  Google Scholar 

  69. van Gils JA, Lisovski S, Lok T, Meissner W, Ožarowska A, de Fouw J, Rakhimberdiev E, Soloviev MY, Piersma T, Klaassen M (2016) Body shrinkage due to Arctic warming reduces red knot fitness in tropical wintering range. Science 352:819–821. https://doi.org/10.1126/science.aad6351

    CAS  Article  PubMed  Google Scholar 

  70. Vickery JA, Ewing SR, Smith KW, Pain DJ, Bairlein F, Skorpilova J, Gregory RD (2014) The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156:1–22. https://doi.org/10.1111/ibi.12118

    Article  Google Scholar 

  71. Wauchope HS, Shaw JD, Varpe Ø, Lappo EG, Boertmann D, Lanctot RB, Fuller RA (2017) Rapid climate-driven loss of breeding habitat for Arctic migratory birds. Glob Chang Biol 23:1085–1094. https://doi.org/10.1111/gcb.13404

    Article  PubMed  Google Scholar 

  72. Zurell D, Graham CH, Gallien L, Thuiller W, Zimmermann NE (2018) Long-distance migratory birds threatened by multiple independent risks from global change. Nat Clim Chang 8:992–996. https://doi.org/10.1038/s41558-018-0312-9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank M. Maticova for her help with the data collection and R. Fuller and many anonymous reviewers for their constructive comments.

Code availability

R code is accessible in Online Resource 1.

Funding

J.K. and J.R. were supported by the Czech Science Foundation (20-00648S) and by the Charles University (PRIMUS/17/SCI/16). J.K. and J.H. were supported by the UNCE program (UNCE/SCI/005). M.Š. and V.K. were supported by the Ministry of Education, Youth and Sports of the Czech Republic MSMT CR (LH13278 and CZ.02.2.69/0.0/0.0/19_074/0014459), and V.K. was supported by ÉLVONAL-KKP 126949 of the Hungarian government.

Author information

Affiliations

Authors

Contributions

J.K. and J.R. contributed equally to the paper. J.R. and V.K. conceived the first ideas. J.K., J.H. and C.S. performed the analysis. J.K., J.R., V.K. and M.Š. drafted the manuscript. All the authors compiled the dataset, commented on the earlier versions of the manuscript and gave their final approval for publication.

Corresponding author

Correspondence to Jaroslav Koleček.

Ethics declarations

Ethics approval

This paper evaluates published data and does not need specific ethics approvals.

Consent to participate

Human subjects were not involved in this study.

Consent for publication

Human subjects were not involved in this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by: Matthias Waltert

Supplementary information

ESM 1

(PDF 136 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koleček, J., Reif, J., Šálek, M. et al. Global population trends in shorebirds: migratory behaviour makes species at risk. Sci Nat 108, 9 (2021). https://doi.org/10.1007/s00114-021-01717-1

Download citation

Keywords

  • Climate change
  • Conservation
  • Habitat deterioration
  • Life history strategy
  • Migration flyway
  • Waders