Skip to main content
Log in

Comparison of the capture efficiency, prey processing, and nutrient extraction in a generalist and a specialist spider predator

  • Original Paper
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Predators are traditionally classified as generalists and specialists based on the presence of adaptations that increase efficiency of prey capture and consumption and selection of particular prey types. Nevertheless, empirical evidence comparing foraging efficiency between generalist and specialist carnivores is scarce. We compared the prey-capture and feeding efficiency in a generalist and a specialist (araneophagous) spider predator. By using two related species, the generalist Harpactea rubicunda (Dysderidae) and the specialist Nops cf. variabilis (Caponiidae), we evaluated their fundamental trophic niche by studying the acceptance of different prey. Then, we compared their predatory behavior, efficiency in capturing prey of varying sizes, feeding efficiency, and nutrient extraction. Nops accepted only spiders as prey, while Harpactea accepted all offered prey, confirming that Nops is stenophagous, while Harpactea is euryphagous. Further, Nops displayed more specialized (stereotyped) capture behavior than Harpactea, suggesting that Nops is a specialist, while Harpactea is a generalist. The specialist immobilized prey faster, overcame much larger prey, and gained more mass (due to feeding on larger prey) than the generalist. Both the specialist and the generalist spider extracted more proteins than lipids, but the extraction of macronutrients in the specialist was achieved mainly by consuming the prosoma of the focal prey. We show that the specialist has more efficient foraging strategy than the generalist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson JF (1974) Responses to starvation in the spiders Lycosa lenta Hentz and Filistata hibernalis (Hentz). Ecology 55:576–585

    Article  Google Scholar 

  • Breed MD, Moore J (2015) Animal behavior. Academic Press, San Diego

    Google Scholar 

  • Britt EJ, Hicks JW, Bennett AF (2006) The energetic consequences of dietary specialization in populations of the garter snake, Thamnophis elegans. J Exp Biol 209:3164–3169

    Article  CAS  PubMed  Google Scholar 

  • Bulbert MW, Herberstein ME, Cassis G (2014) Assassin bug requires dangerous ant prey to bite first. Curr Biol 24:R220–R221

    Article  CAS  PubMed  Google Scholar 

  • Cardoso P, Pekár S, Jocqué R, Coddington JA (2011) Global patterns of guild composition and functional diversity of spiders. PLoS One 6:e21710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerveira A, Jackson RR (2005) Specialised predation by Palpimanus sp. (Araneae: Palpimanidae) on jumping spiders (Araneae: Salticidae). J East African Nat Hist 94(2):303–317

    Article  Google Scholar 

  • Elner RW, Hughes RN (1978) Energy maximization in the diet of the shore crab, Carcinus maenas. J Anim Ecol 47:103–116

    Article  Google Scholar 

  • Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233

    Article  Google Scholar 

  • Gabadinho A, Ritschard G, Müller NS, Studer M (2011) Analyzing and visualizing state sequences in R with TraMineR. J Stat Softw 40(4):1–37

    Article  Google Scholar 

  • Haddad CR, Brabec M, Pekár S, Fourie R (2016) Seasonal population dynamics of a specialized termite-eating spider (Araneae: Ammoxenidae) and its prey (Isoptera: Hodotermitidae). Pedobiologia 59:105–110

    Article  Google Scholar 

  • Harland DP, Jackson RR (2006) A knife in the back: use of prey-specific attack tactics by araneophagic jumping spiders (Araneae: Salticidae). J Zool 269:285–290

    Article  Google Scholar 

  • Hawley J, Simpson SJ, Wilder SM (2014) Effects of prey macronutrient content on body composition and nutrient intake in a web-building spider. PLoS One 9:e99165

    Article  PubMed  PubMed Central  Google Scholar 

  • Heller R (1980) On optimal diet in a patchy environment. Theor Popul Biol 17:201–214

    Article  CAS  PubMed  Google Scholar 

  • Jackson RR, Hallas SEA (1986) Comparative biology of Portia africana, P. albimana, P. fimbriata, P. labiata, and P. schultzi, araneophagic, web-building jumping spiders ( Araneae : Salticidae ): utilisation of webs, predatory versatility, and intraspecific interactions. N Z J Zool 13:423–489

    Article  Google Scholar 

  • Kohl KD, Coogan SCP, Raubenheimer D (2015) Do wild carnivores forage for prey or for nutrients? Evidence for nutrient-specific foraging in vertebrate predators. BioEssays 37:701–709

    Article  PubMed  Google Scholar 

  • Konno K, Kazuma K, Nihei K (2016) Peptide toxins in solitary wasp venoms. Toxins 8:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Krebs CJ (1999) Ecological methodology, 2nd edn. Addison-Wesley Educational Publishers, Menlo Park

    Google Scholar 

  • Lauder GV (1983) Functional and morphological bases of trophic specialization in sunfishes (Teleostei, Centrarchidae). J Morphol 178:1–21

    Article  Google Scholar 

  • Lee KP, Raubenheimer D, Behmer ST, Simpson SJ (2003) A correlation between macronutrient balancing and insect host-plant range: evidence from the specialist caterpillar Spodoptera exempta (Walker). J Insect Physiol 49:1161–1171

    Article  CAS  PubMed  Google Scholar 

  • Lehner P (1996) Handbook of ethological methods, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Mayntz D, Nielsen VH, Raubenheimer D, Hejlesen C (2009) Balancing of protein and lipid intake by a mammalian carnivore, the mink, Mustela vison. Anim Behav 77:349–355

    Article  Google Scholar 

  • Michálek O, Petráková L, Pekár S (2017) Capture efficiency and trophic adaptations of a specialist and generalist predator: a comparison. Ecol Evol 7(8):2756–2766

    Article  PubMed  PubMed Central  Google Scholar 

  • Molles MC Jr, Pietruszka RD (1987) Prey selection by a stonefly: the influence of hunger and prey size. Oecologia 72:473–478

    Article  PubMed  Google Scholar 

  • Mukherjee S, Heithaus MR (2013) Dangerous prey and daring predators: a review. Biol Rev 88:550–563

    Article  PubMed  Google Scholar 

  • Pekár S (2004) Predatory behavior of two European ant-eating spiders (Araneae, Zodariidae). J Arachnol 32:31–34

    Article  Google Scholar 

  • Pekár S, Brabec M (2016) Modern analysis of biological data: generalized linear models in R. Masaryk University Press, Brno

    Google Scholar 

  • Pekár S, Toft S (2015) Trophic specialisation in a predatory group: the case of prey-specialised spiders (Araneae). Biol Rev 90:744–761

    Article  PubMed  Google Scholar 

  • Pekár S, Mayntz D, Ribeiro T, Herberstein ME (2010) Specialist ant-eating spiders selectively feed on different body parts to balance nutrient intake. Anim Behav 79:1301–1306

    Article  Google Scholar 

  • Pekár S, Šobotník J, Lubin Y (2011) Armoured spiderman: morphological and behavioural adaptations of a specialised araneophagous predator (Araneae: Palpimanidae). Naturwissenschaften 98:593–603

    Article  PubMed  Google Scholar 

  • Pekár S, Šedo O, Líznarová E, Korenko S, Zdráhal Z (2014) David and Goliath: potent venom of an ant-eating spider (Araneae) enables capture of a giant prey. Naturwissenschaften 101:533–540

    Article  PubMed  Google Scholar 

  • Pekár S, García LF, Viera C (2017) Trophic niches and trophic adaptations of prey-specialized spiders from the Neotropics: a guide. In: Viera C, Gonzaga MO (eds) Behaviour and ecology of spiders: contributions from the Neotropical region. Springer, Cham, pp 247–274

    Chapter  Google Scholar 

  • Petráková L, Líznarová E, Pekár S, Haddad CR, Sentenská L, Symondson WOC (2015) Discovery of a monophagous true predator, a specialist termite-eating spider (Araneae: Ammoxenidae). Sci Rep 5:14013

    Article  PubMed  PubMed Central  Google Scholar 

  • Pyke GH, Pulliam HR, Charnov E (1977) Optimal foraging: a selective review of theory and tests. Q Rev Biol 52:137–154

    Article  Google Scholar 

  • Raubenheimer D, Simpson SJ (2003) Nutrient balancing in grasshoppers: behavioural and physiological correlates of dietary breadth. J Exp Biol 206:1669–1681

    Article  CAS  PubMed  Google Scholar 

  • Řezáč M, Pekár S, Lubin Y (2008) How oniscophagous spiders overcome woodlouse armour. J Zool 275:64–71

    Article  Google Scholar 

  • Sánchez-Ruiz A (2004) Current taxonomic status of the family Caponiidae (Arachnida, Araneae) in Cuba with the description of two new species. Rev Iber Aracnol 9:95–102

    Google Scholar 

  • Sanderson SL (1991) Functional stereotypy and feeding performance correlated in a trophic specialist. Funct Ecol 5:795–803

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Toft S, Daiquin L, Mayntz D (2010) A specialized araneophagic predator’s short-term nutrient utilization depends on the macronutrient content of prey rather than on prey taxonomic affiliation. Physiol Entomol 35:317–327

    Article  Google Scholar 

  • Wheeler WC, Coddington JA, Crowley LM et al (2017) The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics 33:574–616

    Article  Google Scholar 

  • Whitehouse MEA (1987) “Spider eat spider”: the predatory behavior of Rhomphaea sp. from New Zealand. J Arachnol 15:357–364

    Google Scholar 

  • Wigger E, Kuhn-Nentwig L, Nentwig W (2002) The venom optimisation hypothesis: a spider injects large venom quantities only into difficult prey types. Toxicon 40(6):749–752

    Article  CAS  PubMed  Google Scholar 

  • Wignall A, Taylor P (2009) Alternative predatory tactics of an araneophagic assassin bug (Stenolemus bituberus). Acta Ethol 12:23–27

    Article  Google Scholar 

  • Yamada S, Boulding E (1998) Claw morphology, prey size selection and foraging efficiency in generalist and specialist shell-breaking crabs. J Exp Mar Bio Ecol 220:191–211

    Article  Google Scholar 

  • World Spider Catalog (2016) v17.5. http://wsc.nmbe.ch. Accessed 26 October 2016

Download references

Acknowledgments

We thank Juan Valenzuela, Julio González and Martín Santana for their help with specimen collection. We are also grateful to Milan Řezáč for information on the trophic niche of Harpactea and Ondřej Michálek and Radek Michalko for their collaboration during the development of the project.

Funding

The study was supported by PEDECIBA, grant 8880 of the Uruguayan Agency for Research and Innovation (ANII), and by the Czech Science Foundation (GA15-14762S).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis Fernando García or Stano Pekár.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by: Matjaž Gregorič

Electronic supplementary material

Video S1

Prey capture sequence of Nops catching Pardosa. The video was taken by high-speed camera with the frame-rate 500fps. (MP4 8685 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, L.F., Viera, C. & Pekár, S. Comparison of the capture efficiency, prey processing, and nutrient extraction in a generalist and a specialist spider predator. Sci Nat 105, 30 (2018). https://doi.org/10.1007/s00114-018-1555-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-018-1555-z

Keywords

Navigation