Skip to main content

Advertisement

Log in

Phylogenetic and functional implications of the ear region anatomy of Glossotherium robustum (Xenarthra, Mylodontidae) from the Late Pleistocene of Argentina

  • Original Paper
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Several detailed studies of the external morphology of the ear region in extinct sloths have been published in the past few decades, and this anatomical region has proved extremely helpful in elucidating the phylogenetic relationships among the members of this mammalian clade. Few studies of the inner ear anatomy in these peculiar animals were conducted historically, but these are increasing in number in recent years, in both the extinct and extant representatives, due to wider access to CT-scanning facilities, which allow non-destructive access to internal morphologies. In the present study, we analyze the extinct ground sloth Glossotherium robustum and provide a description of the external features of the ear region and the endocranial side of the petrosal bone, coupled with the first data on the anatomy of the bony labyrinth. Some features observable in the ear region of G. robustum (e.g., the shape and size of the entotympanic bone and the morphology of the posteromedial surface of the petrosal) are highly variable, both intraspecifically and intraindividually. The form of the bony labyrinth of G. robustum is also described, providing the first data from this anatomical region for the family Mylodontidae. The anatomy of the bony labyrinth of the genus Glossotherium is here compared at the level of the superorder Xenarthra, including all available extant and extinct representatives, using geometric morphometric methods. In light of the new data, we discuss the evolution of inner ear anatomy in the xenarthran clade, and most particularly in sloths, considering the influence of phylogeny, allometry, and physiology on the shape of this highly informative region of the skull. These analyses show that the inner ear of Glossotherium more closely resembles that of the extant anteaters, and to a lesser extent those of the giant ground sloth Megatherium and euphractine armadillos, than those of the extant sloths Bradypus and Choloepus, further demonstrating the striking morphological convergence between the two extant sloth genera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

FMNH:

Field Museum of Natural History (Chicago, USA)

FUESMEN:

Fundación Escuela de Medicina Nuclear (Mendoza, Argentina)

MACN Pv:

Colección de Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” (Buenos Aires, Argentina)

MLP:

División Paleontología de Vertebrados, Museo de La Plata (La Plata, Argentina)

ROM:

Royal Ontario Museum (Toronto, Canada)

References

  • Ameghino F (1902) Notas sobre algunos mamíferos fósiles, nuevos ó poco conocidos del valle de Tarija. Anales Mus Nac Hist Nat Buenos Aires 8:225–261

    Google Scholar 

  • Bargo MS, Toledo N, Vizcaíno SF (2006) Muzzle of south American Pleistocene ground sloths (Xenarthra, Tardigrada). J Morphol 267:248–263

    Article  PubMed  Google Scholar 

  • Bargo MS, Vizcaíno SF (2008) Paleobiology of Pleistocene ground sloths (Xenarthra, Tardigrada): biomechanics, morphogeometry and ecomorphology applied to the masticatory apparatus. Ameghiniana 45(1):175–196

    Google Scholar 

  • Benoit J, Essid EM, Marzougui W, Ammar HK, Lebrun R, Tabuce R, Marivaux L (2013) New insights into the ear region anatomy and cranial blood supply of advanced stem Strepsirhini: evidence from three primate petrosals from the Eocene of Chambi, Tunisia. J Hum Evol 65(5):551–572

    Article  PubMed  Google Scholar 

  • Berlin JC, Kirk EC, Rowe TB (2013) Functional implications of ubiquitous semicircular canal non-orthogonality in mammals. PLoS One 8(11):e79585

    Article  PubMed  PubMed Central  Google Scholar 

  • Billet G, Hautier L, Asher RJ, Schwarz C, Crumpton N, Martin T, Ruf I (2012) High morphological variation of vestibular system accompanies slow and infrequent locomotion in three-toed sloths. Proc R Soc B 279:3932–3939

    Article  PubMed  PubMed Central  Google Scholar 

  • Billet G, Germain D, Ruf I, de Muizon C, Hautier L (2013) The inner ear of Megatherium and the evolution of the vestibular system in sloths. J Anat 223(6):557–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billet G, Hautier L, Lebrun R (2015a) Morphological diversity of the bony labyrinth (inner ear) in extant xenarthrans and its relation to phylogeny. J Mammal 96(4):658–672

    Article  Google Scholar 

  • Billet G, de Muizon C, Schellhorn R, Ruf I, Ladevèze S, Bergqvist L (2015b) Petrosal and inner ear anatomy and allometry amongst specimens referred to Litopterna (Placentalia). Zool J Linn Soc 173(4):956–987

    Article  Google Scholar 

  • Blanco RE, Rinderknecht A (2008) Estimation of hearing capabilities of Pleistocene ground sloths (Mammalia, Xenarthra) from middle-ear anatomy. J Vertebr Paleontol 28(1):274–276

    Article  Google Scholar 

  • Blanco RE, Rinderknecht A (2012) Fossil evidence of frequency range of hearing independent of body size in South American Pleistocene ground sloths (Mammalia, Xenarthra). C R Palevol 11(8):549–554

    Article  Google Scholar 

  • Clack AA, MacPhee RD, Poinar HN (2012) Mylodon darwinii DNA sequences from ancient fecal hair shafts. Ann Anat 194(1):26–30

    Article  CAS  PubMed  Google Scholar 

  • Cope ED (1889) The Edentata of North America. Am Nat 23(272):657–664

    Article  Google Scholar 

  • Coutier F, Hautier L, Cornette R, Amson E, Billet G (2017) Orientation of the lateral semicircular canal in Xenarthra and its links with head posture and phylogeny. J Morphol 278(5):704–717

    Article  PubMed  Google Scholar 

  • Danilo L, Remy J, Vianey-Liaud M, Mérigeaud S, Lihoreau F (2015) Intraspecific variation of endocranial structures in extant Equus: a prelude to endocranial studies in fossil equoids. J Mamm Evol 22(4):561–582

    Article  Google Scholar 

  • David R, Droulez J, Allain R, Berthoz A, Janvier P, Bennequin D (2010) Motion from the past. A new method to infer vestibular capacities of extinct species. C R Palevol 9(6):397–410

    Article  Google Scholar 

  • David R, Stoessel A, Berthoz A, Spoor F, Bennequin D (2016) Assessing morphology and function of the semicircular duct system: introducing new in-situ visualization and software toolbox. Sci Rep 6:32772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Iuliis G (2017) Recent progress and future prospects in fossil xenarthran studies, with emphasis on current methodology in sloth taxonomy. J Mamm Evol DOI. https://doi.org/10.1007/s10914-017-9407-8

  • De Iuliis G, Gaudin TJ, Vicars M (2011) A new genus and species of Nothrotheriid sloth (Xenarthra, Tardigrada, Nothrotheriidae) from the Late Miocene (Huayquerian) of Peru. Palaeontology 54(1):171–205

    Article  Google Scholar 

  • De Iuliis G, Cartelle C, McDonald HG, Pujos F (2017) The mylodontine ground sloth Glossotherium tropicorum from the Late Pleistocene of Ecuador and Peru. Pap Palaeontol 3:613–636

    Article  Google Scholar 

  • Delsuc F, Catzeflis FM, Stanhope MJ, Douzery EJ (2001) The evolution of armadillos, anteaters and sloths depicted by nuclear and mitochondrial phylogenies: implications for the status of the enigmatic fossil Eurotamandua. Proc R Soc B 268(1476):1605–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekdale EG (2013) Comparative anatomy of the bony labyrinth (inner ear) of placental mammals. PLoS One 8(6):e66624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekdale EG (2016) Form and function of the mammalian inner ear. J Anat 228(2):324–337

    Article  PubMed  Google Scholar 

  • Ekdale EG, Racicot RA (2015) Anatomical evidence for low frequency sensitivity in an archaeocete whale: comparison of the inner ear of Zygorhiza kochii with that of crown Mysticeti. J Anat 226(1):22–39

    Article  PubMed  Google Scholar 

  • Ekdale EG, Rowe T (2011) Morphology and variation within the bony labyrinth of zhelestids (Mammalia, Eutheria) and other therian mammals. J Vertebr Paleontol 31(3):658–675

    Article  Google Scholar 

  • Esteban GI (1996) Revisión de los Mylodontinae cuaternarios (Edentata-Tardigrada) de Argentina, Bolivia y Uruguay. Sistemática, filogenia, paleobiología, paleozoogeografía y paleoecología. Dissertation, Universidad Nacional de Tucumán

  • Fariña RA, Vizcaíno SF, Bargo MS (1998) Body mass estimations in Lujanian (late Pleistocene-early Holocene of South America) mammal megafauna. Mastozool Neotrol 5(2):87–108

    Google Scholar 

  • Fariña RA, Vizcaíno SF (2003) Slow moving or browsers? A note on nomenclature. Senckenb Biol 83(1):3–4

    Google Scholar 

  • Fernicola JC, Vizcaíno SF, De Iuliis G (2009) The fossil mammals collected by Charles Darwin in South America during his travels on board the HMS Beagle. Rev Asoc Geol Argent 64(1):147–159

    Google Scholar 

  • Flower W (1883) On the arrangement of the orders and families of existing Mammalia. Proc Zool Soc Lond 1883:178–186

    Google Scholar 

  • Gaudin TJ (1995) The ear region of edentates and the phylogeny of the Tardigrada (Mammalia, Xenarthra). J Vertebr Paleontol 15(3):672–705

    Article  Google Scholar 

  • Gaudin TJ (2004) Phylogenetic relationships among sloths (Mammalia, Xenarthra, Tardigrada): the craniodental evidence. Zool J Linnean Soc 140(2):255–305

    Article  Google Scholar 

  • Gaudin TJ (2011) On the osteology of the auditory region and orbital wall in the extinct west Indian sloth genus Neocnus Arredondo, 1961 (Placentalia, Xenarthra, Megalonychidae). Ann Carnegie Mus 80(1):5–28

    Article  Google Scholar 

  • Gaudin TJ, Biewener AA (1992) The functional morphology of xenarthrous vertebrae in the armadillo Dasypus novemcinctus (Mammalia, Xenarthra). J Morphol 214(1):63–81

    Article  CAS  PubMed  Google Scholar 

  • Gaudin TJ, Wible JR (2006) The phylogeny of living and extinct armadillos (Mammalia, Xenarthra, Cingulata): a craniodental analysis. In: Carrano MT, Gaudin TJ, Blob RW, Wible JR (eds) Amniote paleobiology: perspectives on the evolution of mammals, birds and reptiles. University of Chicago Press, Chicago, pp 153–198

    Google Scholar 

  • Gaudin TJ, Croft DA (2015) Paleogene Xenarthra and the evolution of South American mammals. J Mammal 96(4):622–634

    Article  Google Scholar 

  • Gaudin TJ, De Iuliis G, Toledo N, Pujos F (2015) The basicranium and orbital region of the early Miocene Eucholoeops ingens Ameghino, (Xenarthra, Pilosa, Megalonychidae). Ameghiniana 52(2):226–240

    Article  Google Scholar 

  • Gill T (1872) Arrangement of the families of mammals, with analytical tables. Smithson Misc Collect 11:1–98

    Google Scholar 

  • Gosselin-Ildari AD (2006) Functional morphology of the bony labyrinth in primates. The University of Texas at Austin, Dissertation

    Google Scholar 

  • Greenwood AD, Castresana J, Feldmaier-Fuchs G, Pääbo S (2001) A molecular phylogeny of two extinct sloths. Mol Phylogenet Evol 18(1):94–103

    Article  CAS  PubMed  Google Scholar 

  • Guth C (1961) La région temporale des Edentés. Université de Paris, Dissertation

    Google Scholar 

  • Illiger K (1811) Prodromus systematis mammalium et avium. C. Salfeld, Berlin

    Google Scholar 

  • Jones MG, Spells KE (1963) A theoretical and comparative study of the functional dependence of the semicircular canal upon its physical dimensions. Proc R Soc B 157(968):403–419

    Article  CAS  Google Scholar 

  • van der Klaauw CJ (1931) On the tympanic region of the skull in the Mylodontidae. Proc Zool Soc Lond 1931:607–655

    Google Scholar 

  • Lebrun R (2008) Evolution and development of the strepsirrhine primate skull. Université Montpellier II and University of Zürich, Dissertation

    Google Scholar 

  • Lebrun R (2014) ISE-MeshTools software. http://morphomuseum.com/meshtools

  • Lebrun R, de León MP, Tafforeau P, Zollikofer C (2010) Deep evolutionary roots of strepsirrhine primate labyrinthine morphology. J Anat 216(3):368–380

    Article  PubMed  Google Scholar 

  • Linnaeus C (1758) Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, 10th edn, vol 1. Holmiae, Stockholm

    Google Scholar 

  • Lydekker R (1894) The extinct edentates of Argentina. An Mus La Plata 3(2):1–118

    Google Scholar 

  • Macrini TE, Flynn JJ, Ni X, Croft DA, Wyss AR (2013) Comparative study of notoungulate (Placentalia, Mammalia) bony labyrinths and new phylogenetically informative inner ear characters. J Anat 223(5):442–461

    PubMed  PubMed Central  Google Scholar 

  • Malinzak MD, Kay RF, Hullar TE (2012) Locomotor head movements and semicircular canal morphology in primates. Proc Natl Acad Sci U S A 109(44):17914–17919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manoussaki D, Chadwick RS, Ketten DR, Arruda J, Dimitriadis EK, O'Malley JT (2008) The influence of cochlear shape on low-frequency hearing. Proc Natl Acad Sci U S A 105(16):6162–6166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAfee RK (2009) Reassessment of the cranial characters of Glossotherium and Paramylodon (Mammalia: Xenarthra: Mylodontidae). Zool J Linnean Soc 155(4):885–903

    Article  Google Scholar 

  • McKenna MC, Bell SK (1997) Classification of mammals above the species level. Columbia University Press, New York

    Google Scholar 

  • Mones A (1986) Palaeovertebrata Sudamericana. Catálogo sistemático de los vertebrados fósiles de América del Sur. Parte I. Lista preliminar y bibliografía. Cour Forsch Inst Senckenberg 82:1–625

    Google Scholar 

  • Muller M (1999) Size limitations in semicircular duct systems. J Theor Biol 198(3):405–437

    Article  CAS  PubMed  Google Scholar 

  • Nyakatura JA (2012) The convergent evolution of suspensory posture and locomotion in tree sloths. J Mamm Evol 19(3):225–234

    Article  Google Scholar 

  • Orliac MJ, Benoit J, O'Leary MA (2012) The inner ear of Diacodexis, the oldest artiodactyl mammal. J Anat 221(5):417–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orliac MJ, O’Leary MA (2016) The inner ear of Protungulatum (pan-Euungulata, Mammalia). J Mamm Evol 23(4):337–352

    Article  Google Scholar 

  • Owen FRS (1840) Fossil Mammalia. In: Darwin C (ed) The zoology of the voyage of the Beagle. Smith, Elder and Co., London, pp 13–111

    Google Scholar 

  • Owen FRS (1842) Description of the skeleton of an extinct gigantic sloth, Mylodon robustus, Owen, with observations on the osteology, natural affinities, and probable habits of the megatheroid quadrupeds in general. Direction of the Council, London

    Google Scholar 

  • Patterson B, Segall W, Turnbull WD (1989) The ear region in xenarthrans (= Edentata: Mammalia). Part I. Cingulates. Fieldiana Geol 18:1–46

    Google Scholar 

  • Patterson B, Turnbull WD, Segall W, Gaudin TJ (1992) The ear region in xenarthrans (= Edentata: Mammalia). Part II. Pilosa (sloths, anteaters), palaeanodonts, and a miscellany. Fieldiana Geol 24:1–78

    Google Scholar 

  • Perier A, Lebrun R, Marivaux L (2016) Different level of intraspecific variation of the bony labyrinth morphology in slow- versus fast-moving primates. J Mamm Evol 23(4):353–368

    Article  Google Scholar 

  • Pitana VG, Esteban GI, Ribeiro AM, Cartelle C (2013) Cranial and dental studies of Glossotherium robustum (Owen, 1842) (Xenarthra: Pilosa: Mylodontidae) from the Pleistocene of southern Brazil. Alcheringa 37(2):147–162

    Article  Google Scholar 

  • Pujos F, De Iuliis G (2007) Late Oligocene Megatherioidea Fauna (Edentata: Xenarthra) from Salla-Luribay (Bolivia): new data on basal sloth radiation and Cingulata-Phyllophaga split. J Vertebr Paleontol 27(1):132–144

    Article  Google Scholar 

  • Pujos F, De Iuliis G, Cartelle C (2017) A paleogeographic overview of tropical fossil sloths: towards an understanding of the origin of extant suspensory sloths? J Mamm Evol 24(1):1–20

    Article  Google Scholar 

  • Pujos F, Gaudin TJ, De Iuliis G, Cartelle C (2012) Recent advances on variability, morpho-functional adaptations, dental terminology, and evolution of sloths. J Mamm Evol 19(3):159–169

    Article  Google Scholar 

  • Ruf I, Volpato V, Rose KD, Billet G, de Muizon C (2016) Digital reconstruction of the inner ear of Leptictidium auderiense (Leptictida, Mammalia) and north American leptictids reveals new insight into leptictidan locomotor agility. PalZ 90(1):153–171

    Article  Google Scholar 

  • Silcox MT, Bloch JI, Boyer DM, Godinot M, Ryan TM, Spoor F, Walker A (2009) Semicircular canal system in early primates. J Hum Evol 56(3):315–327

    Article  PubMed  Google Scholar 

  • Sipla JS, Spoor F (2008) The physics and physiology of balance. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley and Los Angeles, pp 227–232

    Google Scholar 

  • Slater GJ, Cui P, Forasiepi AM, Lenz D, Tsangaras K, Voirin B, de Moraes-Barros N, MacPhee RDE, Greenwood AD (2016) Evolutionary relationships among extinct and extant sloths: the evidence of mitogenomes and retroviruses. Genome Biol Evol 8(3):607–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Specht M (2007) Spherical surface parameterization and its application to geometric morphometric analysis of the braincase. University of Zürich, Dissertation

    Google Scholar 

  • Specht M, Lebrun R, Zollikofer CPE (2007) Visualizing shape transformation between chimpanzee and human braincases. Vis Comput 23(9):743–751

    Article  Google Scholar 

  • Spoor F, Garland T, Krovitz G, Ryan TM, Silcox MT, Walker A (2007) The primate semicircular canal system and locomotion. Proc Natl Acad Sci U S A 104(26):10808–10812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toledo N (2016) Paleobiological integration of Santacrucian sloths (early Miocene of Patagonia). Ameghiniana 53(2):100–141

    Article  Google Scholar 

  • Varela L, Tambusso PS, Fariña RA (2016) Inner and middle ear 3D reconstruction of the extinct giant sloth Lestodon armatus. ICVM-11 abstracts, Washington DC

  • Vizcaíno SF, Zárate M, Bargo MS, Dondas A (2001) Pleistocene burrows in the mar del Plata area (Argentina) and their probable builders. Acta Palaeontol Pol 46(2):289–301

    Google Scholar 

  • Wible JR (2010) Petrosal anatomy of the nine-banded armadillo, Dasypus novemcinctus Linnaeus, 1758 (Mammalia, Xenarthra, Dasypodidae). Ann Carnegie Mus 79(1):1–28

    Article  Google Scholar 

  • Wible JR, Gaudin TJ (2004) On the cranial osteology of the yellow armadillo Euphractus sexinctus (Dasypodidae, Xenarthra, Placentalia). Ann Carnegie Mus 73(3):117–196

    Google Scholar 

  • Zárate MA, Bargo MS, Vizcaíno SF, Dondas A, Scaglia O (1998) Estructuras biogénicas en el Cenozoico tardío de Mar del Plata (Argentina) atribuibles a grandes mamíferos. Rev Asoc Argent Sedimentol 5(2):95–103

    Google Scholar 

Download references

Acknowledgments

We are grateful to the FUESMEN institute (Fundación Escuela de Medicina Nuclear, Mendoza, Argentina) for access to CT-scanning facilities, and we are particularly indebted to Sergio Mosconi and collaborators for assistance with image processing. We thank A. Kramarz, S.M. Alvarez and L. Chornogubsky (MACN, Buenos Aires, Argentina) and M. Reguero, S.C. Scarano and M.L. de los Reyes (MLP, La Plata, Argentina), who kindly gave access to the specimens under their care. We thank the PaleoFactory Lab (Sapienza Università di Roma, Italy) for access to their facilities, without which this work would not have been possible. We also thank M. Fernández-Monescillo, S. Hernández del Pino and A. Forasiepi (IANIGLA, CCT-CONICET-Mendoza, Argenina) for their useful suggestions. This paper greatly benefited from the careful reading and thoughtful comments by the editor S. Thatje, Prof. G. De Iuliis and other two anonymous reviewers.

Funding

This research was partially funded by ECOS-FonCyT (A14U01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Boscaini.

Additional information

Communicated by: Sven Thatje

Electronic supplementary materials

ESM 1

(PDF 2829 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boscaini, A., Iurino, D.A., Billet, G. et al. Phylogenetic and functional implications of the ear region anatomy of Glossotherium robustum (Xenarthra, Mylodontidae) from the Late Pleistocene of Argentina. Sci Nat 105, 28 (2018). https://doi.org/10.1007/s00114-018-1548-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-018-1548-y

Keywords

Navigation