Advertisement

The Science of Nature

, 104:37 | Cite as

Testing the influence of gravity on flower symmetry in five Saxifraga species

Original Paper

Abstract

Flower symmetry is considered a species-specific trait and is categorized in asymmetry, actinomorphic symmetry, bisymmetry and zygomorphic symmetry. Here we report on the intra-individual variation of flower symmetry in the genus Saxifraga and the influence of light, gravity and intrinsic factors on the development of flower symmetry. We tested five species—Saxifraga cuneifolia, Saxifraga imparilis, Saxifraga rotundifolia, Saxifraga stolonifera and Saxifraga umbrosa—concerning six flower parameters—angles between petals, petal length, petal pigmentation, angular position of carpels, movement of stamens and (only for S. imparilis and S. stolonifera) the length of the two lower elongated petals in regard to their position towards the stem. Specimens of all species were tested on a vertical clinostat as a gravity compensator, on a horizontal clinostat as a light incidence compensator and on a stationary control. The results show that the angle of incident light has no apparent impact on flower symmetry, whereas gravity affects the angular position of petals in S. cuneifolia and S. umbrosa and the petal colouration in S. rotundifolia. In S. cuneifolia and S. umbrosa, the absence of directional gravity resulted in the development of actinomorphic flowers, whereas the corresponding control flowers were zygomorphic. The development of flowers in S. rotundifolia was not altered by this treatment. The length of the two elongated petals in S. stolonifera and S. imparilis was not affected by gravity, but rather was determined by position of the flower within the inflorescence and resulted in asymmetrical flowers.

Keywords

Flower symmetry Zygomorphy Actinomorphy Saxifraga Pollination 

Notes

Acknowledgements

We thank Leonie Sermon and Michaela Krohn for acquisition of data and Andreas Fischbach for support in the botanical garden.

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Supplementary material

114_2017_1458_Fig8_ESM.gif (14.9 mb)
Suppl. Fig. 1

Experimental setup. Flower pots were attached to a vertical clinostat (left) and a horizontal clinostat (right). The control flowers were placed in front of the two clinostat groups. (GIF 15220 kb)

114_2017_1458_MOESM1_ESM.tif (49.4 mb)
High Resolution Image (TIFF 50580 kb)
114_2017_1458_Fig9_ESM.gif (3.6 mb)
Suppl. Fig. 2

Schematic illustration of floral axes. Labelling of floral organs in regard to the three different axes used for analysis of changes in floral symmetry. (GIF 3653 kb)

114_2017_1458_MOESM2_ESM.tif (4.2 mb)
High Resolution Image (TIFF 4330 kb)
114_2017_1458_Fig10_ESM.gif (1.6 mb)
Suppl. Fig. 3

Angular determination of carpel position. The lines between the two carpels were divided into three categorize (horizontal, vertical and diagonal) according to their angular position to the gravitational axis. (GIF 1647 kb)

114_2017_1458_MOESM3_ESM.tif (2.1 mb)
High Resolution Image (TIFF 2155 kb)
114_2017_1458_Fig11_ESM.gif (224 kb)
Suppl. Fig. 4

Phylogeny of Saxifraga according to Soltis et al. (1996). Insets are indicating the colour of petals, floral guides, receptacle/nectary, filaments, and pollen as perceived by humans. (GIF 223 kb)

114_2017_1458_MOESM4_ESM.tif (541 kb)
High Resolution Image (TIFF 540 kb)

References

  1. Adler I (1974) A model of contact pressure in phyllotaxis. J Theor Biol 45:1–79CrossRefPubMedGoogle Scholar
  2. Almeida J, Rocheta M, Galego L (1997) Genetic control of flower shape in Antirrhinum majus. Dev 124:1387–1392Google Scholar
  3. Armbruster WS, Corbet SA, Vey AJM, Liu SJ, Huang SQ (2013) In the right place at the right time: Parnassia resolves the herkogamy dilemma by accurate repositioning of stamens and stigmas. Ann Bot 113:97–103CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bishop A, Help H, El-Showk S, Weijers D, Scheres B, Friml J, Benková E, Mähönen AP, Helariutta Y (2011) A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr Biol 21:917–926CrossRefGoogle Scholar
  5. Chitwood DH, Headland LR, Ranjan A, Martinez CC, Braybrook SA, Koenig DP, Kuhlemeier C, Smith RS, Sinha NR (2012) Leaf asymmetry as developmental constraint imposed by auxin-dependent phyllotactic patterning. Plant Cell 24:2318–2327CrossRefPubMedPubMedCentralGoogle Scholar
  6. Citerne H, Jabbour F, Nadot S, Damerval C (2010) The evolution of floral symmetry. In: Kader JC, Delseny M (eds) Advances in botanical research, vol 54. Academic Press Ltd–Elsevier Science Ltd, London, pp 85–137Google Scholar
  7. Cleland RE (1971) Cell wall extension. Annu Rev Plant Physiol 22:197–222CrossRefGoogle Scholar
  8. Correll MJ, Kiss JZ (2005) The roles of phytochromes in elongation and gravitropism of roots. Plant Cell Physiol 46:317–323CrossRefPubMedGoogle Scholar
  9. Cubas P (2004) Floral zygomorphy, the recurring evolution of a successful trait. Bio Essays 26:1175–1184Google Scholar
  10. Dedolph RR, Dipert MH (1971) The physical basis of gravity stimulus nullification by clinostat rotation. Plant Physiol 47:756–764CrossRefPubMedPubMedCentralGoogle Scholar
  11. Endress PK (1999) Symmetry in flowers: diversity and evolution. Int J Plant Sci 160:3–23CrossRefGoogle Scholar
  12. Endress PK (2001) Evolution of floral symmetry. Curr Opin Plant Biol 4:86–91CrossRefPubMedGoogle Scholar
  13. Fischer C, Neuhaus G (1996) Influence of auxin on the establishment of bilateral symmetry in monocots. Plant J 9:659–669CrossRefGoogle Scholar
  14. Fukaki H, Fujisawa H, Tasaka M (1996) Gravitropic response of inflorescence stems in Arabidopsis thaliana. Plant Physiol 110:933–943CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fukaki H, Fujisawa H, Tasaka M (1997) The RHG gene is involved in root and hypocotyl gravitropism in Arabidopsis thaliana. Plant Cell Physiol 38:804–810CrossRefPubMedGoogle Scholar
  16. Fukaki H , Wysocka-Diller J, Kato T, Fujisawa H, Benfey PN, Tasaka M, (1998) Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. The Plant Journal 14(4):425–430Google Scholar
  17. Giurfa M, Eichmann B, Menzel R (1996) Symmetry perception in an insect. Nature 382:458–461CrossRefPubMedGoogle Scholar
  18. Giurfa M, Dafni A, Neal PR (1999) Floral symmetry and its role in plant-pollinator systems. Int J Plant Sci 160:41–50CrossRefGoogle Scholar
  19. Gómez JM, Perfectti F, Camacho JPM (2006) Natural selection on Erysimum mediohispanicum flower shape: insights into the evolution of zygomorphy. Am Nat 168:531–545CrossRefPubMedGoogle Scholar
  20. Gong YB, Huang SQ (2009) Floral symmetry: pollinator-mediated stabilizing selection on flower size in bilateral species. Proc R Soc Lond Biol 276:4013–4020CrossRefGoogle Scholar
  21. Gübitz T, Caldwell A, Hudson A (2003) Rapid molecular evolution of CYCLOIDEA-like genes in Antirrhinum and its relatives. Mol Biol Evol 20:1537–1544CrossRefPubMedGoogle Scholar
  22. Hangarter RP (1997) Gravity, light and plant form. Plant Cell Environ 20:796–800CrossRefPubMedGoogle Scholar
  23. Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long AJ, Meyerowitz EM (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15:1899–1911CrossRefPubMedGoogle Scholar
  24. Hensel W (1993) Pflanzen in Aktion—Krümmen, klappen, schleudern. Springer Spektrum der Wissenschaft, HeidelbergGoogle Scholar
  25. Heß D (2001) Alpenblumen—Erkennen, verstehen, schützen. Ulmer, StuttgartGoogle Scholar
  26. Hileman LC (2014) Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances. Philos Trans R Soc 369:1–10CrossRefGoogle Scholar
  27. Hileman LC, Baum DA (2003) Why do paralogs persist? Molecular evolution of CYCLOIDEA and related floral symmetry genes in Antirrhineae (Veronicaceae). Mol Biol Evol 20:591–600CrossRefPubMedGoogle Scholar
  28. Hou G, Mohamalawari DR, Blancaflor EB (2003) Enhanced gravitropism of roots with a disrupted cap actin cytoskeleton. Plant Physiol 13:1360–1373CrossRefGoogle Scholar
  29. Hudson A (2000) Development of symmetry in plants. Annu Rev Plant Biol 51:349–370CrossRefGoogle Scholar
  30. Kiss JZ, Wright JB, Caspar T (1996) Gravitropism in roots of intermediate-starch mutants of Arabidopsis. Physiol Plant 97:237–244CrossRefPubMedGoogle Scholar
  31. Köhlein F (1995) Saxifragen und andere Steinbrechgewächse. Ulmer, StuttgartGoogle Scholar
  32. Leins P, Erbar C (2010) Flower and fruit—morphology, ontogeny, phylogeny, function and ecology. Schweizerbart, StuttgartGoogle Scholar
  33. Liu CM, Xu ZH, Chua NH (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5:621–630CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lunau K (1995) Notes on the colour of pollen. Plant Syst Evol 198:235–252CrossRefGoogle Scholar
  35. Lunau K (2000) The ecology and evolution of visual pollen signals. Plant Syst Evol 222:89–111CrossRefGoogle Scholar
  36. Lunau K, Wacht S (1994) Optical releasers of the innate proboscis extension in the hoverfly Eristalis tenax L. (Syrphidae, Diptera). J Comp Physiol A 174:574–579CrossRefGoogle Scholar
  37. Luo D, Carpenter R, Vincent C, Copsey L, Coen E (1996) Origin of floral asymmetry in Antirrhinum. Nature 383:794–799CrossRefPubMedGoogle Scholar
  38. Luo D, Carpenter R, Vincent C, Copsey L, Clark J, Coen E (1999) Control of organ asymmetry in flowers of Antirrhinum. Cell 99:367–376CrossRefPubMedGoogle Scholar
  39. MacCleery SA, Kiss JZ (1999) Plastid sedimentation kinetics in roots of wild-type and starch-deficient mutants of Arabidopsis. Plant Physiol 120:183–192CrossRefPubMedPubMedCentralGoogle Scholar
  40. Møller AP (1995) Bumblebee preference for symmetrical flowers. Proc Natl Acad Sci U S A 92:2288–2292CrossRefPubMedPubMedCentralGoogle Scholar
  41. Neal PR, Dafni A, Giurfa M (1998) Floral symmetry and its role in plant-pollinator systems. Annu Rev Ecol Syst 29:345–373CrossRefGoogle Scholar
  42. Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3:677–684CrossRefPubMedPubMedCentralGoogle Scholar
  43. Plowright CMS, Evans SA, Chew Leung J, Collin CA (2011) The preference for symmetry in flower-naїve and not-so-naїve bumblebees. Learn Motiv 42:76–83CrossRefGoogle Scholar
  44. Pohl M, Watolla T, Lunau K (2008) Anther-mimicking floral guides exploit a conflict between innate preference and learning in bumblebees (Bombus terrestris). Behav Ecol Sociobiol 63:295–302CrossRefGoogle Scholar
  45. Prenner G, Bateman RM, Rudall PJ (2010) Floral formulae updated for routine inclusion in formal taxonomic descriptions. Taxon 59:241–250Google Scholar
  46. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  47. Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518CrossRefPubMedPubMedCentralGoogle Scholar
  48. Reyes E, Sauquet H, Nadot S (2016) Perianth symmetry changed at least 199 times in angiosperm evolution. Taxon 65:945–964CrossRefGoogle Scholar
  49. Rodríguez I, Gumbert A, Hempel de Ibarra N, Kunze J, Giurfa M (2004) Symmetry is in the eye of the ‘beeholder’: innate preference for bilateral symmetry in flower-naїve bumblebees. Naturwissenschaften 91:374–377PubMedGoogle Scholar
  50. Rudall PJ, Bateman RM (2004) Evolution of zygomorphy in monocot flowers: iterative patterns and developmental constraints. New Phytol 162:25–44CrossRefGoogle Scholar
  51. Sack FD (1997) Plastids and gravitropic sensing. Planta 203:63–68CrossRefGoogle Scholar
  52. Sack FD, Kim D, Stein B (1994) Organelle sedimentation in gravitropic roots of Limnobium is restricted to the elongation zone. Ann Bot 74:34–42CrossRefGoogle Scholar
  53. Salisbury FB (1993) Gravitropism: changing ideas. Hortic Rev 15:233–278Google Scholar
  54. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedGoogle Scholar
  55. Schoute JC (1913) Beiträge zur Blattstellungslehre. Réc Trav Bot Néerl 10:153–235Google Scholar
  56. Soltis DE, Kuzoff RK, Conti E, Gornall E, Ferguson K (1996) matK and rbcL gene sequence data indicate that Saxifraga (Saxifragaceae) is polyphyletic. Am J Bot 83:371–382CrossRefGoogle Scholar
  57. Staves MP (1997) Cytoplasmic streaming and gravity sensing in Chara internodal cells. Planta 203:79–84CrossRefGoogle Scholar
  58. Stebbins GL (1974) Flowering plants: evolution above the species level. Harvard University Press, CambridgeCrossRefGoogle Scholar
  59. Ushimaru A, Dohzono I, Takami Y, Hyodo F (2009) Flower orientation enhances pollen transfer in bilaterally symmetrical flowers. Oecologia 160:667–674CrossRefPubMedGoogle Scholar
  60. Vöchting H (1886) Über Zygomorphie und deren Ursachen. Jb wiss Bot 17:297–346Google Scholar
  61. Wayne R, Staves MP, Leopold AC (1992) The contribution of the extracellular matrix to gravisensing in characean cells. J Cell Sci 101:611–623PubMedGoogle Scholar
  62. Weberling F (1981) Morphologie der Blüten und der Blütenstände. Ulmer, StuttgartGoogle Scholar
  63. Zgurski JM, Sharma R, Bolokoski DA, Schultz EA (2005) Asymmetric auxin response precedes asymmetric growth and differentiation of asymmetric leaf1 and asymmetric leaf2 Arabidopsis leaves. Plant Cell 17:77–91CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Sensory EcologyHeinrich-Heine-University DüsseldorfDüsseldorfGermany

Personalised recommendations