The Science of Nature

, 104:25 | Cite as

Unusual intraosseous fossilized soft tissues from the Middle Triassic Nothosaurus bone

  • Dawid Surmik
  • Bruce M. Rothschild
  • Roman Pawlicki
Original Paper


Fossilized soft tissues, occasionally found together with skeletal remains, provide insights to the physiology and functional morphology of extinct organisms. Herein, we present unusual fossilized structures from the cortical region of bone identified in isolated skeletal remains of Middle Triassic nothosaurs from Upper Silesia, Poland. The ribbed or annuli-shaped structures have been found in a sample of partially demineralized coracoid and are interpreted as either giant red blood cells or as blood vessel walls. The most probable function is reinforcing the blood vessels from changes of nitrogen pressure in air-breathing diving reptiles. These structures seem to have been built of extensible muscle layers which prevent the vessel damage during rapid ascent. Such suspected function presented here is parsimonious with results of previous studies, which indicate rarity of the pathological modification of bones associated with decompression syndrome in Middle Triassic nothosaurs.


Intraosseous Physiology Fossilized soft tissues Nothosaurus Middle Triassic 



We would like to thank Dr. Katarzyna Balin (Silesian Centre for Education and Interdisciplinary Research, Chorzów, Poland) for performing the mass spectrometry measurements and Aleksandra Pikuła (Sosnowiec, Poland) for making the three-dimensional idealized restoration of ribbed vessel. This research project is supported by National Science Center, Poland ( grant no. 2011/01/N/ST10/06989.

Author contributions

DS conceived and designed the project with contribution of BMR. RP with DS prepared samples to scanning electron microscopy and mass spectra analyses. RP performed SEM images. DS with BMR wrote the paper with consultation of RP.


  1. Bertazzo S, Maidment SCR, Kallepitis C, Fearn S, Stevens MM, Xie H (2015) Fibres and cellular structures preserved in 75-million-year-old dinosaur specimens. Nat Commun 6:7352. doi: 10.1038/ncomms8352 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Brachaniec T, Niedźwiedzki R, Surmik D, Krzykawski T, Szopa K, Gorzelak P, Salamon MA (2015) Coprolites of marine vertebrate predators from the Lower Triassic of southern Poland. Palaeogeog Palaeocl Palaeoec 435:118–126. doi: 10.1016/j.palaeo.2015.06.005 CrossRefGoogle Scholar
  3. Cadena E (2016) Microscopical and elemental FESEM and Phenom ProX-SEM-EDS analysis of osteocyte- and blood vessel-like microstructures obtained from fossil vertebrates of the Eocene Messel Pit, Germany. PeerJ 4:e1618. doi: 10.7717/peerj.1618 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Danise S, Higgs ND (2015) Bone-eating Osedax worms lived on Mesozoic marine reptile deadfalls. Biol Lett 11:20150072–20150072. doi: 10.1098/rsbl.2015.0072 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Eroschenko VP (2008) DiFioreʼs atlas of histology with functional correlations, 11th edn. Wolters Kluwer/Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  6. Glover AG, Källström B, Smith CR, Dahlgren TG (2005) World-wide whale worms? A new species of Osedax from the shallow north Atlantic. Proc R Soc B 272:2587–2592. doi: 10.1098/rspb.2005.3275 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Goodman RM, Heah TP (2010) Temperature-induced plasticity at cellular and organismal levels in the lizard Anolis carolinensis. Integr Zool 5:208–217. doi: 10.1111/j.1749-4877.2010.00206.x CrossRefPubMedGoogle Scholar
  8. Greenwalt DE, Goreva YS, Siljeström SM, Rose T, Harbach RE (2013) Hemoglobin-derived porphyrins preserved in a Middle Eocene blood-engorged mosquito. PNAS. doi: 10.1073/pnas.1310885110 PubMedPubMedCentralGoogle Scholar
  9. Gürich G (1884) Über einige Saurier des Oberschlesischen Muschelkalkes. Zeitschr. der Deutsch. Geologisch. Gesellsch. 36:125–144Google Scholar
  10. Jans MME (2008) Microbial bioerosion of bone—a review. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer-Verlag, Berlin Heidelberg, pp 397–414CrossRefGoogle Scholar
  11. Ji C, Jiang D-Y, Rieppel O et al (2014) A new specimen of Nothosaurus youngi from the middle Triassic of Guizhou, China. J Vertebr Paleontol 34:465–470. doi: 10.1080/02724634.2013.808204 CrossRefGoogle Scholar
  12. Klein N (2010) Long bone histology of Sauropterygia from the Lower Muschelkalk of the Germanic Basin provides unexpected implications for phylogeny. PLoS One 5:e11613. doi: 10.1371/journal.pone.0011613 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Klein N, Albers PC (2009) A new species of the sauropsid reptile Nothosaurus from the Lower Muschelkalk of the western Germanic Basin, Winterswijk, the Netherlands. Acta Palaeontol Pol 54:589–598. doi: 10.4202/app.2008.0083 CrossRefGoogle Scholar
  14. Klein N, Sander PM, Krahl A, Scheyer TM, Houssaye A (2016) Diverse aquatic adaptations in Nothosaurus spp. (Sauropterygia)—inferences from humeral histology and microanatomy. PLoS One 11:e0158448. doi: 10.1371/journal.pone.0158448 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kowal-Linka M (2008) Formalizacja litostratygrafii formacji gogolińskiej (trias środkowy) na Śląsku Opolskim Geologos 14: 125–161Google Scholar
  16. Kunisch H (1888) Über eine Saurierplatte aus dem Oberschlesischen Muschelkalke. Zeitschr der Deutsch Geologisch Gesellsch 40:671–693Google Scholar
  17. Liu J, Hu S, Rieppel O et al (2014) A gigantic nothosaur (Reptilia: Sauropterygia) from the Middle Triassic of SW China and its implication for the Triassic biotic recovery. Sci Rep. doi: 10.1038/srep07142 Google Scholar
  18. Lundsten L, Schlining KL, Frasier K, Johnson SB, Kuhnz LA, Harvey JBJ, Clague G, Vrijenhoek RC (2010) Time-series analysis of six whale-fall communities in Monterey Canyon, California. USA Deep Sea Res I 57:1573–1584. doi: 10.1016/j.dsr.2010.09.003 CrossRefGoogle Scholar
  19. Pawlicki R (1995) Histochemical demonstration of DNA in Osteocytes from dinosaur bones. Folia Histochem Cytobiol 33:183–186Google Scholar
  20. Pawlicki R, Nowogrodzka-Zagórska M (1998) Blood vessels and red blood cells preserved in dinosaur bones. Annals of Anatomy – Anatom Anz 180:73–77. doi: 10.1016/S0940-9602(98)80140-4 CrossRefGoogle Scholar
  21. Pawlicki R, Korbel A, Kubiak H (1966) Cells, collagen fibrils and vessels in dinosaur bone. Nature 211:655–657CrossRefPubMedGoogle Scholar
  22. Resnick D (2002) Diagnosis of bone and joint disorders, 2nd edn. Saunders, PhiladelphiaGoogle Scholar
  23. Rieppel O (1998) The status of the sauropterygian reptile genera Ceresiosaurus, Lariosaurus, and Silvestrosaurus from the Middle Triassic of Europe. Chicago, Ill.: Field Museum of Natural HistoryGoogle Scholar
  24. Rieppel O (2000) Sauropterygia I. Placodontia, Pachypleurosauria, Nothosauroidea, Pistosauroidea. Handbuch Der Paläoherpetologie, 134Google Scholar
  25. Rieppel O, Wild R (1996) A revision of the genus Nothosaurus (Reptilia: Sauropterygia) from the Germanic Triassic, with comments on the status of Conchiosaurus clavatus. Fieldiana 1(34):1–82Google Scholar
  26. Rieppel O, Mazin J-M, Tchernov E (1997) Speciation along rifting continental margins: a new Nothosaur from the Negev (Israël). C R Acad Sci Ser IIA Earth Planet Sci 325:991–997. doi: 10.1016/S1251-8050(97)82380-4 Google Scholar
  27. Rothschild BM (1987) Decompression syndrome in fossil marine turtles. Annals of the Carnegie Museum 56:253–358Google Scholar
  28. Rothschild BM, Martin LD (1987) Avascular necrosis: occurrence in diving cretaceous mosasaurs. Science 236:75–77. doi: 10.1126/science.236.4797.75 CrossRefPubMedGoogle Scholar
  29. Rothschild BM, Martin LD (2006) Skeletal impact of disease. New Mexico Museum of Natural History, AlbuquerqueGoogle Scholar
  30. Rothschild BM, Naples V (2015) Decompression syndrome and diving behavior in Odontochelys, the first turtle. Acta Pal Pol 60:163–167. doi: 10.4202/app.2012.0113 Google Scholar
  31. Rothschild BM, Storrs GW (2003) Decompression syndrome in plesiosaurs (Sauropterygia: Reptilia). J Vertebr Paleontol 23:324–328. doi: 10.1671/0272-4634(2003)023(0324:DSIPSR)2.0.CO;2 CrossRefGoogle Scholar
  32. Rothschild BM, Xiaoting Z, Martin LD (2012) Adaptations for marine habitat and the effect of Triassic and Jurassic predator pressure on development of decompression syndrome in ichthyosaurs. Naturwissenschaften 299:443–448. doi: 10.1007/s00114-012-0918-0 CrossRefGoogle Scholar
  33. Rouse GW, Goffredi SK, Vrijenhoek RC (2004) Osedax: bone-eating marine worms with dwarf males. Science 305:668–671. doi: 10.1126/science.1098650 CrossRefPubMedGoogle Scholar
  34. Schweitzer MH, Suo Z, Avci R, Asara JM, Allen MA, Arce FT, Horner JR (2007) Analyses of soft tissue from tyrannosaurus rex suggest the presence of protein. Science 316:277–280. doi: 10.1126/science.1138709 CrossRefPubMedGoogle Scholar
  35. Schweitzer MH, Avci R, Collier T, Goodwin MB (2008) Microscopic, chemical and molecular methods for examining fossil preservation. Compt Rend Palevol 7:159–184CrossRefGoogle Scholar
  36. Schweitzer MH, Zheng W, Cleland TP, Goodwin MB, Boatman E, Theil E et al (2014) A role for iron and oxygen chemistry in preserving soft tissues, cells and molecules from deep time. Proc R Soc B 281:20132741. doi: 10.1098/rspb.2013.2741 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Starostová Z, Konarzewski M, Kozłowski J, Kratochvíl L (2013) Ontogeny of metabolic rate and red blood cell size in eyelid geckos: species follow different paths. PLoS One 8:e64715. doi: 10.1371/journal.pone.0064715 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Surmik D, Boczarowski A, Balin K, Dulski M, Szade J, Kremer B, Pawlicki R (2016) Spectroscopic studies on organic matter from Triassic reptile bones, upper Silesia, Poland. PLoS One 11:e0151143. doi: 10.1371/journal.pone.0151143 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Vijendravarma RK, Narasimha S, Kawecki TJ (2011) Plastic and evolutionary responses of cell size and number to larval malnutrition in Drisophila melanogaster. J. Evol Biol 24:897–903CrossRefGoogle Scholar
  40. von Meyer H (1847–1855) Die Saurier des Muschelkalkes mit Rücksicht auf die Saurier aus Buntem Sandstein und Keuper (in) Zur Fauna Der Vorwelt. Frankfurt A. MainGoogle Scholar
  41. Wagner C, Steffen P, Svetina S (2013) Aggregation of red blood cells: from rouleaux to clot formation. Comptes rendus – Physique 14:459–469. doi: 10.1016/j.crhy.2013.04.004 CrossRefGoogle Scholar
  42. Wintrobe MM (1933) Variations in the size and hemoglobin content of erythrocytes in the blood of various vertebrates. Folia haematol 51:32–49Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Park of Science & Human EvolutionKrasiejówPoland
  2. 2.Faculty of Earth ScienceUniversity of SilesiaSosnowiecPoland
  3. 3.Carnegie MuseumPittsburghUSA
  4. 4.West Virginia University College of MedicineMorgantownUSA
  5. 5.Department of HistologyJagiellonian University Medical CollegeKrakówPoland

Personalised recommendations