The Science of Nature

, 104:20 | Cite as

Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats

  • Sebastiano Salvidio
  • Giulia Palumbi
  • Antonio Romano
  • Andrea Costa
Short Communication


Recent studies suggest that many organisms actively colonize the subterranean environment to avoid climatic stress, exploit new ecological opportunities and reduce competition and predation. Terrestrial salamanders are known to colonize the more stable subterranean habitats mainly to escape external climatic extremes, while the role of predation avoidance remains untested. To better understand the importance of predation, we used clay models of the cave salamander Speleomantes strinatii to compare the predation occurring in woodland and subterranean habitats. Models were positioned in three forests and in three caves in NW Italy. One-hundred eighty-four models were retrieved from the field and 59 (32%) were attacked by predators. Models were attacked on their head more often than expected by chance and, therefore, were perceived by predators as real prey items. In the woodlands, clay models showed a four-time higher probability of being attacked in comparison to caves, suggesting a different level of potential predation risk in these surface habitats. These findings are one of the first experimental evidences that, in terrestrial ecosystems, predation avoidance may contribute to the salamander underground colonization process.


Cave Clay model Colonization Predation avoidance Underground habitat 



S.S. was partially funded by FRA 2015; A.C. is funded by a doctoral fellowship. We are grateful to four anonymous Reviewers for their constructive comments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

114_2017_1443_MOESM1_ESM.pdf (317 kb)
ESM 1 (PDF 316 kb)


  1. Bellés X (1991) Survival, opportunism and convenience in the processes of cave colonization by terrestrial faunas. Oecol Aquat 10:325–335Google Scholar
  2. Camp CD, Jensen JB (2007) Use of twilight zones of caves by plethodontid salamanders. Copeia 2007:594–604. doi: 10.1643/0045-8511(2007)2007[594:UOTZOC]2.0.CO;2 CrossRefGoogle Scholar
  3. Costa A, Crovetto F, Salvidio S (2016) European plethodontid salamanders on the forest floor: local abundance is related to fine-scale environmental factors. Herpetol Conserv Biol 11:344–349Google Scholar
  4. Culver DC (1982) Cave life. Harvard University Press, HarvardCrossRefGoogle Scholar
  5. Culver DC, Pipan T (2014) Shallow subterranean habitats: ecology, evolution, and conservation. Oxford University Press, OxfordCrossRefGoogle Scholar
  6. Feder ME (1983) Integrating the ecology and physiology of plethodontid salamanders. Herpetologica 39:291–310Google Scholar
  7. Ficetola GF, Pennati R, Manenti R (2013) Spatial segregation among age classes in cave salamanders: habitat selection or social interactions? Popul Ecol 55:217–222. doi: 10.1007/s10144-012-0350-5 CrossRefGoogle Scholar
  8. Fitzpatrick BM, Shook K, Izally R (2009) Frequency − dependent selection by wild birds promotes polymorphism in model salamanders. BMC Ecol 9:1. doi: 10.1186/1472-6785-9-12 CrossRefGoogle Scholar
  9. Howarth FG, Hoch H (2012) Adaptive shifts. In: White D, Culver DC (eds) Encyclopedia of caves. Elsevier Academic Press, Burlington, pp 9–17CrossRefGoogle Scholar
  10. Kraemer AC, Serb JM, Adams DC (2016) Both novelty and conspicuousness influence selection by mammalian predators on the colour pattern of Plethodon cinereus (Urodela: Plethodontidae). Biol J Linn Soc 118:889–900. doi: 10.1111/bij.12780 CrossRefGoogle Scholar
  11. Kuchta SR (2005) Experimental support for aposematic coloration in the salamander Ensatina eschscholtzii xanthoptica: implications for mimicry of Pacific newts. Copeia 2005:267–271. doi: 10.1643/CH-04-173R CrossRefGoogle Scholar
  12. Lanza B (2006) Genere Speleomantes Dubois, 1984. In: Lanza B, Andreone F, Bologna MA, Corti C, Razzetti E (eds) Fauna d’Italia Amphibia. Edizioni Calderini, Bologna, pp 142–152Google Scholar
  13. Lanza B, Pastorelli C, Laghi P, Cimmaruta R (2006) A review of systematics, taxonomy, genetics and natural history of the genus Speleomantes Dubois, 1984 (Amphibia Caudata Plethodontidae). Atti Mus Civ St Nat Trieste 52:5–135Google Scholar
  14. Lindström J, Reeve R, Salvidio S (2010) Bayesian salamanders: analysing the demography of an underground population of the European plethodontid Speleomantes strinatii with state-space modelling. BMC Ecol 10:4. doi: 10.1186/1472-6785-10-4 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Lunghi E, Manenti R, Ficetola GF (2015) Seasonal variation in microhabitat of salamanders: environmental variation or shift of habitat selection? PeerJ 3:e1122. doi: 10.7717/peerj.1122 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Manenti R, Melotto A, Denoel M, Ficetola GF (2016) Amphibian breeding in refuge habitats have larvae with stronger antipredatory responses. Anim Behav 118:115–121. doi: 10.1016/j.anbehav.2016.06.0060003-3472 CrossRefGoogle Scholar
  17. Paluh DJ, Hantak MM, Saporito RA (2014) A test of aposematism in the dendrobatid poison frog Oophaga pumilio: the importance of movement in clay model experiments. J Herpetol 48:244–254. doi: 10.1670/13-027 CrossRefGoogle Scholar
  18. Poulson TL, White WB (1969) The cave environment. Science 165:971–980. doi: 10.1126/science.165.3897.971 CrossRefPubMedGoogle Scholar
  19. Romero A (1985) Cave colonization by fish: the role of bat predation. Am Midl Nat 113:7–12. doi: 10.2307/2425342 CrossRefGoogle Scholar
  20. Salvidio S, Lattes A, Tavano M, Melodia F, Pastorino MV (1994) Ecology of a Speleomantes ambrosii population inhabiting an artificial tunnel. Amphibia-Reptilia 15:35–45. doi: 10.1163/156853894X00533 CrossRefGoogle Scholar
  21. Salvidio S, Romano S, Oneto F, Ottonello D, Michelon R (2012) Different season, different strategies: feeding ecology of two syntopic forest-dwelling salamanders. Acta Oecol 43:42–50. doi: 10.1016/j.actao.2012.05.001 CrossRefGoogle Scholar
  22. Salvidio S, Crovetto F, Adams D (2015) Potential rapid evolution of foot morphology in Italian plethodontid salamanders (Hydromantes strinatii) following the colonization of an artificial cave. J Evolution Biol 28:1403–1409. doi: 10.1111/jeb.12654
  23. Trajano E (2012) Evolution of lineages. In: White WB, Culver DC (eds) Encyclopedia of caves. Elsevier Academic Press, BurligntonGoogle Scholar
  24. Watson CM, Roelke CE, Pasichnyk PN, Cox CL (2012) The fitness consequences of the autotomous blue tail in lizards: an empirical test of predator response using clay models. Zoology 115:339–344. doi: 10.1016/j.zool.2012.04.001 CrossRefPubMedGoogle Scholar
  25. White B, Culver DC (2012) Encyclopedia of caves. Elsevier Academic Press, BurlingtonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Sebastiano Salvidio
    • 1
  • Giulia Palumbi
    • 1
  • Antonio Romano
    • 2
  • Andrea Costa
    • 1
  1. 1.Dipartimento di Scienze della Terra dell’Ambiente e della Vita (DISTAV)Università degli Studi di GenovaGenovaItaly
  2. 2.Consiglio Nazionale delle RicercheIstituto di Biologia Agroambientale e Forestale (IBAF-CNR)Monterotondo ScaloItaly

Personalised recommendations