Advertisement

The Science of Nature

, 104:16 | Cite as

Variations in chemical sexual signals of Psammodromus algirus lizards along an elevation gradient may reflect altitudinal variation in microclimatic conditions

  • José Martín
  • Francisco Javier Zamora-Camacho
  • Senda Reguera
  • Pilar López
  • Gregorio Moreno-Rueda
Original Paper

Abstract

Chemical signals used in intraspecific communication are expected to evolve or to show phenotipic plasticity to maximize efficacy in the climatic conditions of a given environment. Elevational environmental gradients in mountains provide a good opportunity to test this hypothesis by examining variation in characteristics of signals in species found across different elevations with different climatic conditions. We analyzed by gas chromatography–mass spectrometry (GC-MS) the lipophilic fraction of the femoral gland secretions of male lizards Psammodromus algirus (Fam. Lacertidae) from six localities located along a 2200 m elevational gradient at Sierra Nevada Mountains (SE Spain). There was elevational clinal variation in climatic variables, number of femoral pores and in the relative proportions of some classes of compounds (i.e., ethyl esters of fatty acids, waxy esters, and aldehydes) but not others. We discuss how this variation would result in different physicochemical properties of the entire femoral secretion, which might help optimize the efficacy of chemical signals under the particular microclimatic conditions at each elevation.

Keywords

Aldehydes Elevational variation Climate Fatty acids Femoral gland secretions Lizards Waxy esters 

Notes

Acknowledgements

We thank four anonymous reviewers for helpful comments. Financial support was provided by the projects MINECO CGL2009-13185 and CGL2014-53523-P. FJZ-C and SR were supported by two predoctoral fellowships by Spanish Ministerio de Ciencia e Innovación (FPU program). FJZ-C was partly supported by a Ramón Areces Foundation postdoctoral grant.

Compliance with ethical standards

Ethical note

The study was carried out in conformity with the Spanish current laws for lizard collection and detection, according to permits issued by Junta de Andalucía to the authors (references GMN/GyB/JMIF and ENSN/JSG/JEGT/MCF).

References

  1. Aebischer NJ, Robertson PA, Kenward RE (1993) Compositional analysis of habitat use from animal radio-tracking data. Ecology 74:1313–1325CrossRefGoogle Scholar
  2. Alberts AC (1992) Constraints on the design of chemical communication systems in terrestrial vertebrates. Am Nat 139:62–89CrossRefGoogle Scholar
  3. Alberts AC (1993) Chemical and behavioral studies of femoral gland secretions in iguanid lizards. Brain Behav Evol 41:255–260CrossRefPubMedGoogle Scholar
  4. Alberts AC, Sharp TR, Werner DI, Weldon PJ (1992) Seasonal variation of lipids in femoral gland secretions of male green iguanas, Iguana iguana. J Chem Ecol 18:703–712CrossRefPubMedGoogle Scholar
  5. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  6. Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525CrossRefGoogle Scholar
  7. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E Ltd, Plymouth, UKGoogle Scholar
  8. Apps PJ, Weldon PJ, Kramer M (2015) Chemical signals in terrestrial vertebrates: search for design features. Nat Prod Rep 32:1131–1153CrossRefPubMedGoogle Scholar
  9. Aragón P, López P, Martín J (2001) Chemosensory discrimination of familiar and unfamiliar conspecifics by lizards: implication of field spatial relationships between males. Behav Ecol Sociobiol 50:128–133CrossRefGoogle Scholar
  10. Baeckens S, Edwards S, Huyghe K, Van Damme R (2015) Chemical signalling in lizards: an interspecific comparison of femoral pore numbers in Lacertidae. Biol J Linn Soc 144:44–57CrossRefGoogle Scholar
  11. Blumthaler M, Ambach W, Ellinger R (1997) Increase in solar UV radiation with altitude. J Photochem Photobiol 39:130–134CrossRefGoogle Scholar
  12. Bonnet X, Naulleau G (1994) A body condition index (BCI) in snakes to study reproduction. C R Acad Sci Ser III Sci Vie 317:34–41Google Scholar
  13. Boughman JW (2002) How sensory drive can promote speciation. Trends Ecol Evol 17:571–577CrossRefGoogle Scholar
  14. Bradbury JW, Vehrencamp SV (2011) Principles of animal. Communication, 2nd edn. Sinauer Associates, Sunderland, MAGoogle Scholar
  15. Carazo P, Font E, Desfilis E (2007) Chemosensory assessment of rival competitive ability and scent mark function in a lizard (Podarcis hispanica). Anim Behav 74:895–902CrossRefGoogle Scholar
  16. Carranza S, Harris DJ, Arnold EN, Batista V, Gonzalez De La Vega JP (2006) Phylogeography of the lacertid lizard, Psammodromus algirus, in Iberia and across the strait of Gibraltar. J Biogeogr 33:1279–1288CrossRefGoogle Scholar
  17. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E Ltd, Plymouth, UKGoogle Scholar
  18. Díaz JA (1997) Ecological correlates of the thermal quality of an ectotherm’s habitat: a comparison between two temperate lizard populations. Funct Ecol 11:79–89CrossRefGoogle Scholar
  19. Domínguez-Rodríguez R, Justicia-Segovia A (1995) Aplicación del análisis de regresión al estudio de la precipitaciones en la vertiente sur de Sierra Nevada. Baética 17:67–98Google Scholar
  20. Endler JA, Basolo AL (1998) Sensory ecology, receiver biases and sexual selection. Trends Ecol Evol 13:416–420CrossRefGoogle Scholar
  21. Escobar CA, Labra A, Niemeyer HM (2001) Chemical composition of precloacal secretions of Liolaemus lizards. J Chem Ecol 27:1677–1690CrossRefPubMedGoogle Scholar
  22. Escobar CM, Escobar CA, Labra A, Niemeyer HM (2003) Chemical composition of precloacal secretions of two Liolaemus fabiani populations: are they different? J Chem Ecol 29:629–638CrossRefPubMedGoogle Scholar
  23. Fox SF, Shipman PA (2003) Social behavior at high and low elevations: environmental release and phylogenetic effects in Liolaemus. In: Fox SF, McCoy JK, Baird TA (eds) Lizard social behavior. John Hopkins University Press, Baltimore, pp 310–355Google Scholar
  24. Gabirot M, Lopez P, Martín J, de Fraipont M, Heulin B, Sinervo B, Clobert J (2008) Chemical composition of femoral secretions of oviparous and viviparous types of male common lizards Lacerta vivipara. Biochem Syst Ecol 36:539–544CrossRefGoogle Scholar
  25. Gabirot M, Lopez P, Martín J (2012b) Interpopulational variation in chemosensory responses to selected steroids from femoral secretions of male lizards, Podarcis hispanica, mirrors population differences in chemical signals. Chemoecol 22:65–73CrossRefGoogle Scholar
  26. Gabirot M, Lopez P, Martín J (2012b) Differences in chemical sexual signals may promote reproductive isolation and cryptic speciation between Iberian wall lizard populations. Int J Evol Biol 2012a:Article ID 698520Google Scholar
  27. García-Roa R, Cabido C, López P, Martín J (2016) Interspecific differences in chemical composition of femoral gland secretions between two closely related wall lizard species, Podarcis bocagei and P. carbonelli. Biochem Syst Ecol 64:105–110CrossRefGoogle Scholar
  28. Graae BJ, de Frenne P, Kolb A, Brunet J, Chabrerie O, Verheyen K, Pepin N, Heinken T, Zobel M, Shevtsova A, Nijs I, Milbau A (2012) On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121:3–19CrossRefGoogle Scholar
  29. Guilford T, Dawkins MS (1991) Receiver psychology and the evolution of animal signals. Anim Behav 42:1–14CrossRefGoogle Scholar
  30. Heathcote RJP, Bell E, d'Ettorre P, While GM, Uller T (2014) The scent of sun worship: basking experience alters scent mark composition in male lizards. Behav Ecol Sociobiol 68:861–870CrossRefGoogle Scholar
  31. Iraeta P, Monasterio C, Salvador A, Díaz JA (2011) Sexual dimorphism and interpopulation differences in lizard hind limb length: locomotor performance or chemical signalling? Biol J Linn Soc 104:318–329CrossRefGoogle Scholar
  32. Kopena R, Lopez P, Martín J (2009) Lipophilic compounds from the femoral gland secretions of male Hungarian green lizards, Lacerta viridis Z Naturforsch C 64:434–440Google Scholar
  33. Kopena R, Martín J, Lopez P, Herczeg G (2011) Vitamin E supplementation increases the attractiveness of males’ scent for female European green lizards. PLoS One 6(4):e19410CrossRefPubMedPubMedCentralGoogle Scholar
  34. Körner C (2007) The use of “altitude” in ecological research. Trends Ecol Evol 22:569–574CrossRefPubMedGoogle Scholar
  35. López P, Martín J (2006) Lipids in the femoral gland secretions of male Schreiber’s green lizards, Lacerta schreiberi. Z Naturforsch C 61:763–768CrossRefPubMedGoogle Scholar
  36. López P, Martín J (2011) Male iberian rock lizards may reduce the costs of fighting by scent-matching of the resource holders. Behav Ecol Sociobiol 65:1891–1898CrossRefGoogle Scholar
  37. López P, Muñoz A, Martín J (2002) Symmetry, male dominance and female mate preferences in the Iberian rock lizard, Lacerta monticola. Behav Ecol Sociobiol 52:342–347CrossRefGoogle Scholar
  38. López P, Martín J, Cuadrado M (2003) Chemosensory cues allow male lizards Psammodromus algirus to override visual concealment of sexual identity by satellite males. Behav Ecol Sociobiol 54:218–224CrossRefGoogle Scholar
  39. Martín J, López P (2006a) Vitamin D supplementation increases the attractiveness of males’ scent for female Iberian rock lizards. Proc R Soc Lond B Biol Sci 273:2619–2624CrossRefGoogle Scholar
  40. Martín J, López P (2006b) Links between male quality, male chemical signals, and female mate choice in Iberian rock lizards. Funct Ecol 20:1087–1096CrossRefGoogle Scholar
  41. Martín J, López P (2006c) Interpopulational differences in chemical composition and chemosensory recognition of femoral gland secretions of male lizards Podarcis hispanica: implications for sexual isolation in a species complex. Chemoecol 16:31–38CrossRefGoogle Scholar
  42. Martín J, López P (2006d) Age-related variation in lipophilic chemical compounds from femoral gland secretions of male lizards Psammodromus algirus. Biochem Syst Ecol 34:691–697CrossRefGoogle Scholar
  43. Martín J, Lopez P (2007) Scent may signal fighting ability in male Iberian rock lizards. Biol Lett 3:125–127Google Scholar
  44. Martín J, López P (2010) Condition-dependent pheromone signalling by male rock lizards: more oily scents are more attractive. Chem Sens 35:253–262Google Scholar
  45. Martín J, Lopez P (2011) Pheromones and reproduction in reptiles. In: Norris DO, Lopez KH (eds) Hormones and reproduction in vertebrates–reptiles. Academic Press, San Diego, pp 141–167Google Scholar
  46. Martín J, Lopez P (2012) Supplementation of male pheromone on rock substrates attracts female rock lizards to the territories of males: a field experiment. PLoS One 7:e30108CrossRefPubMedPubMedCentralGoogle Scholar
  47. Martín J, Lopez P (2013) Effects of global warming on sensory ecology of rock lizards: increased temperatures alter the efficacy of sexual chemical signals. Funct Ecol 27:1332–1340CrossRefGoogle Scholar
  48. Martín J, López P (2014) Pheromones and chemical communication in lizards. In: Rheubert JL, Siegel DS, Trauth SE (eds) The reproductive biology and phylogeny of lizards and tuatara. CRC Press, Boca Raton, pp 43–77Google Scholar
  49. Martín J, López P (2015) Condition-dependent chemosignals in reproductive behavior of lizards. Horm Behav 68:14–24CrossRefPubMedGoogle Scholar
  50. Martín J, Moreira PL, López P (2007a) Status-signalling chemical badges in male Iberian rock lizards. Funct Ecol 21:568–576CrossRefGoogle Scholar
  51. Martín J, Civantos E, Amo L, López P (2007b) Chemical ornaments of male lizards Psammodromus algirus May reveal their parasite load and health state to females. Behav Ecol Sociobiol 62:173–179CrossRefGoogle Scholar
  52. Martín J, Ortega J, López P (2015) Interpopulational variations in sexual chemical signals of Iberian wall lizards may allow maximizing signal efficiency under different climatic conditions. PLoS One 10(6):e0131492CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mason RT (1992) Reptilian pheromones. In: Gans C (ed) Biology of the Reptilia: hormones, brain, and behavior, vol Vol. 18. University of Chicago Press, Chicago, pp 114–228Google Scholar
  54. Mason RT, Parker MR (2010) Social behaviour and pheromonal communication in reptiles. J Comp Physiol A 196:729–749CrossRefGoogle Scholar
  55. McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297CrossRefGoogle Scholar
  56. McDonough LM, Brown DF, Aller WC (1989) Insect sex pheromones: effect of temperature on evaporation rates of acetates from rubber septa. J Chem Ecol 15:779–790CrossRefPubMedGoogle Scholar
  57. Olsson M, Madsen T, Nordby J, Wapstra E, Ujvari B, Wittsell H (2003) Major histocompatibility complex and mate choice in sand lizards. Proc R Soc Lond B Biol Sci 270:254–256CrossRefGoogle Scholar
  58. Raso-Nadal JM (2011) Variabilidad de las precipitaciones en Sierra Nevada y su relación con distintos patrones de teleconexión. Nimbus 27-28:183–199Google Scholar
  59. Regnier FE, Goodwin M (1977) On the chemical and environmental modulation of pheromone release from vertebrate scent marks. In: Müller-Schwarze D, Mozell MM (eds) Chemical signals in vertebrates. Plenum Press, New York, pp 115–133CrossRefGoogle Scholar
  60. Reguera S (2015) Adaptive color variation along an elevational gradient. The case of the Mediterranean lizard Psammodromus algirus. PhD Dissertation, Universidad de Granada, SpainGoogle Scholar
  61. Reguera S, Zamora-Camacho FJ, Moreno-Rueda G (2014) The lizard Psammodromus algirus (Squamata: Lacertidae) is darker at high altitudes. Biol J Linn Soc 112:132–141CrossRefGoogle Scholar
  62. Salvador A (2015) Lagartija colilarga—Psammodromus algirus (Linnaeus, 1758). In: Salvador A, Marco A (eds) Enciclopedia Virtual de los Vertebrados Españoles. Museo Nacional de Ciencias Naturales, Madrid http://www.vertebradosibericos.org/ Google Scholar
  63. Symonds MR, Elgar MA (2008) The evolution of pheromone diversity. Trends Ecol Evol 23:220–228CrossRefPubMedGoogle Scholar
  64. Weldon PJ, Flachsbarth B, Schulz S (2008) Natural products from the integument of nonavian reptiles. Nat Prod Rep 25:738–756CrossRefPubMedGoogle Scholar
  65. Wyatt TD (2014) Pheromones and animal behaviour: chemical signals and signatures. Cambridge University Press, CambridgeGoogle Scholar
  66. Zamora-Camacho FJ, Reguera S, Moreno-Rueda G, Pleguezuelos JM (2013) Patterns of seasonal activity in a Mediterranean lizard along a 2200 m altitudinal gradient. J Therm Biol 38:64–69CrossRefGoogle Scholar
  67. Zamora-Camacho FJ, Reguera S, Moreno-Rueda G (2016) Thermoregulation in the lizard Psammodromus algirus along a 2200-m elevational gradient in sierra Nevada (Spain). Int J Biometeor 60:687–697CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • José Martín
    • 1
  • Francisco Javier Zamora-Camacho
    • 2
    • 3
  • Senda Reguera
    • 2
  • Pilar López
    • 1
  • Gregorio Moreno-Rueda
    • 2
  1. 1.Departamento de Ecología EvolutivaMuseo Nacional de Ciencias Naturales, C.S.I.CMadridSpain
  2. 2.Departamento de ZoologíaFacultad de Ciencias, Universidad de GranadaGranadaSpain
  3. 3.Department of Biological SciencesDartmouth CollegeHanoverUSA

Personalised recommendations