The Science of Nature

, 104:22 | Cite as

Tail regeneration affects the digestive performance of a Mediterranean lizard

  • Kostas Sagonas
  • Niki Karambotsi
  • Aristoula Bletsa
  • Aikaterini Reppa
  • Panayiotis Pafilis
  • Efstratios D. Valakos
Short Communication


In caudal autotomy, lizards shed their tail to escape from an attacking predator. Since the tail serves multiple functions, caudal regeneration is of pivotal importance. However, it is a demanding procedure that requires substantial energy and nutrients. Therefore, lizards have to increase energy income to fuel the extraordinary requirements of the regenerating tail. We presumed that autotomized lizards would adjust their digestion to acquire this additional energy. To clarify the effects of tail regeneration on digestion, we compared the digestive performance before autotomy, during regeneration, and after its completion. Tail regeneration indeed increased gut passage time but did not affect digestive performance in a uniform pattern: though protein income was maximized, lipid and sugar acquisition remained stable. This divergence in proteins may be attributed to their particular role in tail reconstruction, as they are the main building blocks for tissue formation.


Caudal autotomy Reptiles Digestion Tail regeneration 

Supplementary material

114_2017_1437_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 18 kb)


  1. Alibardi L (2010) Morphological and cellular aspects of tail and limb regeneration in lizards. A model system with implication for tissue regeneration in mammals. Springer Heidelberg, New YorkCrossRefGoogle Scholar
  2. Arnold EN (1988) Caudal autotomy as a defense. In: Gans C, Huey RB (eds) Biology of the reptilia. Alan R. Liss, New York, pp 235–273Google Scholar
  3. Bateman PW, Fleming PA (2009) To cut a long tail short: a review of lizard caudal autotomy studies carried out over the last 20 years. J Zool 277:1–14CrossRefGoogle Scholar
  4. Bellairs DA, Bryant SV (1985) Autotomy and regeneration in reptiles. In: Gans BC, Billet F (eds) Biology of the reptilia. John Wiley and Sons, New York, pp 301–410Google Scholar
  5. Boozalis TS, LaSalle LT, Davis JR (2012) Morphological and biochemical analyses of original and regenerated lizard tails reveal variation in protein and lipid composition. Comp Biochem Physiol A 161(1):77–82CrossRefGoogle Scholar
  6. da Diefenbach CO (1975) Gastric function in Caiman crocodilus (Crocodylia: Reptilia). II. Effects of temperature on pH and proteolysis. Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology 51(2):267–274CrossRefGoogle Scholar
  7. Doughty P, Shine R, Lee MSY (2003) Energetic costs of tail loss in a montane scincid lizard. Comp Biochem Physiol A Mol Integr Physiol 135(2):215–219CrossRefPubMedGoogle Scholar
  8. Fox SF, McCoy JK (2000) The effects of tail loss on survival, growth, reproduction, and sex ratio of offspring in the lizard Uta stansburiana in the field. Oecologia 122(3):327–334CrossRefPubMedGoogle Scholar
  9. Herrel A, Huyghe K, Vanhooydonck B, Backeljau T, Breugelmans K, Grbac I, Van Damme R, Irschick DJ (2008) Rapid large-scale evolutionary divergence in morphology and performance associated with exploitation of a different dietary resource. Proc Natl Acad Sci U S A 105(12):4792–4795CrossRefPubMedPubMedCentralGoogle Scholar
  10. Karameta E, Mizan VL, Sagonas K, Sfenthourakis SM, Efstratios DV, Pafilis P (2017) Ontogenetic shifts in the digestive efficiency of an insectivorous lizard (Squamata: Agamidae). Salamandra. In pressGoogle Scholar
  11. Karasov WH, Martinez Del Rio C (2007) Physiological ecology: how animals process energy, nutrients, and toxins. Princeton University Press, New JerseyGoogle Scholar
  12. Maginnis TL (2006) The costs of autotomy and regeneration in animals: a review and framework for future research. Behav Ecol Sociobiol 17:857–872CrossRefGoogle Scholar
  13. McConnachie S, Alexander GJ (2004) The effect of temperature on digestive and assimilation efficiency, gut passage time and appetite in an ambush foraging lizard, Cordylus melanotus melanotus. J Comp Physiol B 174(2):99–105CrossRefPubMedGoogle Scholar
  14. McElroy EJ, Bergmann PJ (2013) Tail autotomy, tail size, and locomotor performance in lizards. Physiol Biochem Zool 86(6):669–679CrossRefPubMedGoogle Scholar
  15. Meyer V, Preest MR, Lochetto SM (2002) Physiology of original and regenerated lizard tails. Herpetologica 58(1):75–86CrossRefGoogle Scholar
  16. Naya DE, Božinović F (2006) The role of ecological interactions on the physiological flexibility of lizards. Funct Ecol 20:601–608CrossRefGoogle Scholar
  17. Pafilis P, Foufopoulos J, Poulakakis N, Lymberakis P, Valakos E (2007) Digestive performance in five Mediterranean lizard species: effects of temperature and insularity. J Comp Physiol B 177(1):49–60CrossRefPubMedGoogle Scholar
  18. Pafilis P, Meiri S, Sagonas K, Karakasi D, Kourelou E, Valakos ED (2016) Body size affects digestive performance in a Mediterranean lizard. Herpetol J 26:199–205Google Scholar
  19. Pérez-Mellado V, Corti C, Lo Cascio P (1997) Tail autotomy and extinction in Mediterranean lizards. A preliminary study of continental and insular populations. J Zool 243(3):533–541CrossRefGoogle Scholar
  20. Pinoni SA, Iribarne O, Mañanes AAL (2011) Between-habitat comparison of digestive enzymes activities and energy reserves in the SW Atlantic euryhaline burrowing crab Neohelice granulata. Comp Biochem Physiol A 158(4):552–559CrossRefGoogle Scholar
  21. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  22. Sagonas K, Pafilis P, Valakos ED (2015) Effects of insularity on digestive performance: living in islands induces shifts in physiological and morphological traits in a Mediterranean lizard? Sci Nat 102(9–10):55–62CrossRefGoogle Scholar
  23. Simou C, Pafilis P, Skella A, Kourkouli A, Valakos ED (2008) Physiology of original and regenerated tails in Aegean wall lizard (Podarcis erhardii). Copeia 2008(3):504–509CrossRefGoogle Scholar
  24. Skoczylas R (1978) Physiology of the digestive tract. In: Gans C, Tinkle DW (eds) Biology of the reptilia. Academic Press, London, pp 589–717Google Scholar
  25. Slos S, De Block M, Stoks R (2009) Autotomy reduces immune function and antioxidant defence. Biol Letters 5:90–92CrossRefGoogle Scholar
  26. Tsasi G, Pafilis P, Simou C, Valakos ED (2009) Predation pressure, density-induced stress and tail regeneration: a casual-nexus situation or a bunch of independent factors? Amphibia Reptilia 30(4):471–482CrossRefGoogle Scholar
  27. Van Damme R, Bauwens D, Verheyen RF (1991) The thermal dependence of feeding behaviour, food consumption and gut-passage time in the lizard Lacerta vivipara Jacquin. Funct Ecol 5(4):507–517CrossRefGoogle Scholar
  28. Vervust B, Pafilis P, Valakos ED, Van Damme R (2010) Anatomical and physiological changes associated with a recent dietary shift in the lizard Podarcis sicula. Physiol Biochem Zool 83(4):632–642CrossRefPubMedGoogle Scholar
  29. Vitt LJ, Congdon JD, Dickson NA (1977) Adaptive strategies and energetics of tail autonomy in lizards. Ecology 58(2):326–337CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Kostas Sagonas
    • 1
  • Niki Karambotsi
    • 2
  • Aristoula Bletsa
    • 2
  • Aikaterini Reppa
    • 2
  • Panayiotis Pafilis
    • 3
  • Efstratios D. Valakos
    • 2
  1. 1.School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
  2. 2.Department of Human and Animal Physiology, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
  3. 3.Department of Zoology and Marine Biology, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations