Temporal genetic structure of a drone congregation area of the giant Asian honeybee (Apis dorsata)

Abstract

The giant Asian honeybee (Apis dorsata), like all other members of the genus Apis, has a complex mating system in which the queens and males (drones) mate at spatially defined drone congregation areas (DCAs). Here, we studied the temporal genetic structure of a DCA of A. dorsata over an 8-day time window by the genotyping of sampled drones with microsatellite markers. Analysis of the genotypic data revealed a significant genetic differentiation between 3 sampling days and indicated that the DCA was used by at least two subpopulations at all days in varying proportions. The estimation of the number of colonies which used the DCA ranged between 20 and 40 colonies per subpopulation, depending on the estimation procedure and population. The overall effective population size was estimated as high as N e=140. The DCA seems to counteract known tendencies of A. dorsata for inbreeding within colony aggregations by facilitating gene flow among subpopulations and increasing the effective population size.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Baudry E, Solignac M, Garnery L, Gries M, Cornuet JM, Koeniger N (1998) Relatedness among honeybees (Apis mellifera) of a drone congregation. Proc R Soc Lond B Biol Sci 265:2009–2014

    Article  Google Scholar 

  2. 2.

    Estoup A, Solignac M, Cornuet JM (1994) Precise assessment of the number of patrilines and of genetic relatedness in honeybee colonies. Proc R Soc Lond B Biol Sci 258:1–7

    CAS  Article  Google Scholar 

  3. 3.

    Koeniger N, Weiss J, Maschwitz U (1979) Alarm pheromones of the sting in the genus Apis. J Insect Physiol 25:467–476

    CAS  Article  Google Scholar 

  4. 4.

    Koeniger N, Koeniger G, Tingek S, Kalitu A, Mardan M (1994) Drones of Apis dorsata (Fabricius 1793) Congregate under the canopy of tall emergent trees in Borneo. Apidologie 25:249–264

    Article  Google Scholar 

  5. 5.

    Kraus FB, Koeniger N, Tingek S, Moritz RFA (2005) Using drones for estimating colony number by microsatellite DNA analyses of haploid males in Apis. Apidologie 36:223–229

    CAS  Article  Google Scholar 

  6. 6.

    Mackensen O (1951) Viability and sex determination in the honey bee (Apis mellifera L.). Genetics 36:500–509

    CAS  PubMed  Google Scholar 

  7. 7.

    Moritz RFA, Kryger P, Koeniger G, Koeniger N, Estoup A, Tingek S (1995) High degree of polyandry in Apis dorsata queens detected by DNA microsatellite variability. Behav Ecol Sociobiol 37:357–363

    Article  Google Scholar 

  8. 8.

    Neumann P, Koeniger N, Koeniger G, Tingek S, Kryger, P, Moritz RFA (2000) Home-site fidelity in migratory honeybees. Nature 406:474–475

    CAS  Article  Google Scholar 

  9. 9.

    Paar J, Oldroyd BP, Kastberger G (2000) Giant honeybees return to their nest sites. Nature 406:475

    CAS  Article  Google Scholar 

  10. 10.

    Paar J, Oldroyd BP, Huettinger E, Kastberger G (2004) Genetic structure of an Apis dorsata population: the significance of migration and colony aggregation. J Hered 95:119–126

    CAS  Article  Google Scholar 

  11. 11.

    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  12. 12.

    Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  13. 13.

    Ruttner F, Ruttner H (1968) Untersuchungen über die Flugaktivität und das Paarungsverhalten der Drohnen. IV. Zur Fernorientierung und Ortsstetigkeit der Drohnen auf ihren Paarungsflügen. Z Bienenforsch 9:259–265

    Google Scholar 

  14. 14.

    Ruttner F (1988) Biogeography and taxonomy of honeybees. Springer, Berlin Heidelberg New York

    Google Scholar 

  15. 15.

    Schlüns H, Moritz RFA, Neumann P, Kryger P, Koeniger G (2005) Multiple nuptial flights, sperm transfer and the evolution of extreme polyandry in honeybee queens. Anim Behav 70:125–131

    Article  Google Scholar 

  16. 16.

    Tan NQ, Mardan M, Thai PH, Chinh PH (1999) Observations on multiple mating flights of Apis dorsata queens. Apidologie 30:339–346

    Article  Google Scholar 

  17. 17.

    Wang J (2004) Sibship reconstruction from genetic data with typing errors. Genetics 166:1963–1979

    Article  Google Scholar 

  18. 18.

    Wattanachaiyingcharoen W, Oldroyd BP, Wongsiri S, Palmer K, Paar R (2003) A scientific note on the mating frequency of Apis dorsata. Apidologie 34:85–86

    Article  Google Scholar 

  19. 19.

    Woyke J (1963) What happens to diploid drone larvae in a honeybee colony? J Apic Res 2:73–76

    Article  Google Scholar 

  20. 20.

    Wright S (1933) Inbreeding and homozygosis. Proc Natl Acad Sci U S A 19:411–420

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. B. Kraus.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kraus, F.B., Koeniger, N., Tingek, S. et al. Temporal genetic structure of a drone congregation area of the giant Asian honeybee (Apis dorsata). Naturwissenschaften 92, 578–581 (2005). https://doi.org/10.1007/s00114-005-0044-3

Download citation

Keywords

  • Apis dorsata
  • Drone congregation area
  • Giant Asian honeybee
  • Microsatellite
  • Population structure