Advertisement

Der Unfallchirurg

, Volume 121, Issue 7, pp 530–536 | Cite as

Hämostyptika zur Behandlung der „junctional vascular injuries“

Versorgung traumatischer Gefäßverletzungen am Übergang vom Körperstamm zur Extremität
  • D. C. Hinck
  • S. Wipper
  • E. S. Debus
Leitthema

Zusammenfassung

Hintergrund

Die unkontrollierte Blutung ist weiterhin die Haupttodesursache polytraumatisierter Patienten. Waren es bislang Großschadensereignisse oder militärische Konflikte, in denen die unkontrollierte, kritische Blutung unter unwirtlichen Bedingungen zu versorgen war, zeigen zunehmend neuere Untersuchungen der Versorgung von gefäßverletzten polytraumatisierten Patienten, dass selbst unter individualmedizinischen Aspekten die Schwere des Gefäßtraumas unterschätzt wird. In der Konsequenz führt dies zu einer schlechteren Prognose des (gefäß-)traumatisierten Patienten.

Aus diesem Wissen heraus, wurden Ausbildung und Schulung nicht nur des medizinischen Fachpersonals (Advanced Trauma Life Support®), sondern auch der Laienhelfer in der Erstbehandlung von Blutungen intensiviert („Hartford Consensus“). In Deutschland wurde mit der neuerlichen Aktualisierung der S3-Leitlinie Polytrauma/Schwerverletzten-Behandlung der Deutschen Gesellschaft für Unfallchirurgie 2016 u. a. ein Schwerpunkt auf die Versorgung von Blutungen gelegt.

Trotz einer Renaissance und zunehmenden Verbreitung des Tourniquets bleibt die Versorgung von Blutungen im Bereich des Übergangs vom Körperstamm zur Extremität („junctional vascular injuries“), die der Tourniquetanlage nicht zugänglich sind, weiterhin problematisch.

Schlussfolgerung

Um dieses Wissen, war es wiederum das Militär, das die Forschung und Implementierung von Produkten zur Blutstillung, sog. Hämostyptika, in dieser anatomischen Region intensivierte. Der vorliegende Beitrag befasst sich mit diesen „junctional vascular injuries“ am Übergang vom Körperstamm zur oberen bzw. zur unteren Extremität. Dem Leser wird neben den anatomischen Gegebenheiten ein Überblick über die zurzeit gängigen Hämostyptika und ihre Wirkweise vermittelt.

Schlüsselwörter

Polytrauma Blutung Chitosan Zeolithe Kaolin 

Hemostyptics for treatment of junctional vascular injuries

Management of traumatic vascular injuries at the transition from trunk to extremities

Abstract

Background

Uncontrolled post-traumatic bleeding is still the leading cause of death among trauma patients. In situations of mass casualty incidents (MASCAL) and military conflicts the treatment of uncontrolled critical bleeding is a challenge and associated with a worse outcome due to the austere environment; however, even under optimal treatment circumstances in situations of individual medicine the severity of vascular trauma is underestimated. As a consequence, this leads to a poorer prognosis for patients with (vascular) injuries. From this perspective it was reasonable to intensify the training of physicians, paramedics (Advanced Trauma Life Support©) and first responders (Hartford consensus) for handling of critical bleeding in traumatized patients. Furthermore, the main emphasis of the revised S3 clinical guidelines on polytrauma/severely injured treatment from 2016 of the German Society for Trauma Surgery is on the preclinical treatment. Despite a renaissance and increasing use of tourniquets, the treatment of bleeding in the transition from the trunk to the extremities (junctional vascular injuries), which are inaccessible to placing a tourniquet, remains a problem.

Conclusion

It was the military that in addition to the development of special tourniquets, intensified research programs and the implementation of hemostatic devices and dressings in this anatomical region. This article deals with junctional vascular injuries at the transition between the trunk and the extremities. In addition to the anatomical situation, this article gives the reader an overview of the currently available hemostyptics and their mode of action.

Keywords

Polytrauma Bleeding Chitosan Zeolites Kaolinite 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

D.C. Hinck, S. Wipper und E.S. Debus geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Acheson EM, Kheirabadi BS, Deguzman R et al (2005) Comparison of hemorrhage control agents applied to lethal extremity arterial hemorrhages in swine. J Trauma 59:865–875CrossRefPubMedGoogle Scholar
  2. 2.
    Acosta JA, Yang JC, Winchell RJ et al (1998) Lethal injuries and time to death in a level one trauma center. J Am Coll Surg 186:528–533CrossRefPubMedGoogle Scholar
  3. 3.
    Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF) (2016) S3-Leitlinie Polytrauma/Schwerverletzten-Behandlung AWMF Register-Nr. 012/019Google Scholar
  4. 4.
    Ahuja N, Ostomel TA, Rhee P et al (2006) Testing of modified zeolite hemostatic dressings in a large animal model of lethal groin injury. J Trauma 61:1312–1320CrossRefPubMedGoogle Scholar
  5. 5.
    Aktop S, Emekli-Alturfan E, Ozer C et al (2014) Effects of Ankaferd blood stopper and Celox on the tissue factor activities of warfarin-treated rats. Clin Appl Thromb Hemost 20:16–21CrossRefPubMedGoogle Scholar
  6. 6.
    Alam HB, Chen Z, Jaskille A et al (2004) Application of a zeolite hemostatic agent achieves 100 % survival in a lethal model of complex groin injury in swine. J Trauma 56:974–983CrossRefPubMedGoogle Scholar
  7. 7.
    Arnaud F, Parreno-Sadalan D, Tomori T et al (2009) Comparison of 10 hemostatic dressings in a groin transection model in swine. J Trauma 67:848–855CrossRefPubMedGoogle Scholar
  8. 8.
    Arnaud F, Tomori T, Carr W et al (2008) Exothermic reaction in zeolite hemostatic dressings: quikclot ACS and ACS+®. Ann Biomed Eng 36:1708–1713CrossRefPubMedGoogle Scholar
  9. 9.
    Arnaud F, Tomori T, Saito R et al (2007) Comparative efficacy of granular and bagged formulations of the hemostatic agent quikclot. J Trauma 63:775–782CrossRefPubMedGoogle Scholar
  10. 10.
    Bennett BL, Littlejohn LF, Kheirabadi BS et al (2014) Management of external hemorrhage in tactical combat casualty care: chitosan-based hemostatic gauze dressings – TCCC guidelines-change 13-05. J Spec Oper Med 14:40–57PubMedGoogle Scholar
  11. 11.
    Causey MW, McVay DP, Miller S et al (2012) The efficacy of combat gauze in extreme physiologic conditions. J Surg Res 177:301–305CrossRefPubMedGoogle Scholar
  12. 12.
    Champion HR, Bellamy RF, Roberts CP et al (2003) A profile of combat injury. J Trauma 54(suppl 5):13–19Google Scholar
  13. 13.
    Chou TC, Fu E, Wu CJ et al (2003) Chitosan enhances platelet adhesion and aggregation. Biochem Biophys Res Commun 302:480–483CrossRefPubMedGoogle Scholar
  14. 14.
    Cox ED, Schreiber MA, McManus J et al (2009) New hemostatic agents in the combat setting. Transfusion 49:248–S255CrossRefGoogle Scholar
  15. 15.
    Eastridge BJ, Mabry RL, Seguin P et al (2012) Death on the battlefield (2001–2011): implications for the future of combat casualty care. J Trauma Acute Care Surg 73:431–437CrossRefGoogle Scholar
  16. 16.
    Englehart MS, Cho D, Zink KA et al (2009) A novel highly porous silica and chitosan-based hemostatic dressing is superior to HemCon® and gauze sponges. J Trauma 65:884–892CrossRefGoogle Scholar
  17. 17.
    Friemert B, Franke A, Bieler D et al (2017) Versorgungsstrategien beim MANV/TerrorMANV in der Unfall- und Gefäßchirurgie. Chirurg.  https://doi.org/10.1007/s00104-017-0490-4 CrossRefPubMedGoogle Scholar
  18. 18.
    Granville-Chapman J, Jacobs N, Midwinter MJ (2011) Pre-hospital haemostatic dressings: a systematic review. Injury 42:447–459CrossRefPubMedGoogle Scholar
  19. 19.
    Jewelewicz DD, Cohn SM, Crooks BA et al (2003) Modified rapid deployment hemostat bandage reduces blood loss and mortality in coagulopthic pigs with severe liver injury. J Trauma 55:275–280CrossRefPubMedGoogle Scholar
  20. 20.
    Kelly JF, Ritenour AE, McLaughlin DF et al (2008) Injury severity and causes of death from Operation Iraqi Freedom and Operation Enduring Freedom: 2003–2004 versus 2006. J Trauma 64:21–S27CrossRefGoogle Scholar
  21. 21.
    Kheirabadi BS (2011) Evaluation of topical hemostatic agents for combat wound treatment. Us Army Med Dep J April–June:25–37Google Scholar
  22. 22.
    Kheirabadi BS, Acheson EM, Deguzman R et al (2005) Hemostatic efficacy of two advanced dressings in an aortic hemorrhage model in swine. J Trauma 59:25–34CrossRefPubMedGoogle Scholar
  23. 23.
    Kheirabadi BS, Arnaud F, McCarron R et al (2011) Development of a standard swine haemorrhage model for efficacy assessment of topical hemostatic agents. J Trauma 71:139–146CrossRefGoogle Scholar
  24. 24.
    Kheirabadi BS, Edens JW, Terrazas IB et al (2009) Comparison of new hemostatic granules/powders with currently deployed hemostatic products in a lethal model of extremity arterial hemorrhage in swine. J Trauma 66:316–328CrossRefPubMedGoogle Scholar
  25. 25.
    Kheirabadi BS, Scherer MR, Estep JS et al (2009) Determination of efficacy of new hemostatic dressings in a model of extremity arterial hemorrhage in swine. J Trauma 67:450–460CrossRefPubMedGoogle Scholar
  26. 26.
    Kozen BG, Kircher SJ, Henao J et al (2008) An alternative hemostatic dressing: comparison of Celox, HemCon, and Quikclot. Acad Emerg Med 15:74–81CrossRefPubMedGoogle Scholar
  27. 27.
    Kunio NR, Riha GM, Watson KM et al (2013) Chitosan based advanced hemostatic dressing is associated with decreased blood loss in a swine uncontrolled hemorrhage model. Am J Surg 205:505–510CrossRefPubMedGoogle Scholar
  28. 28.
    Littlejohn LF, Devlin JJ, Kircher SS et al (2011) Comparison of Celox-A, ChitoFlex, WoundStat, and Combat Gauze hemostatic agents versus standard gauze dressing in control of hemorrhage in a swine model of penetrating trauma. Acad Emerg Med 18:340–350CrossRefPubMedGoogle Scholar
  29. 29.
    Millner RWJ, Lockhart AS, Marr R (2010) Chitosan arrests bleeding in major hepatic injuries with clotting dysfunction: an in vivo experimental study in a model of hepatic injury in the presence of moderate systemic heparinisation. Ann R Coll Surg Engl 92:559–561CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Okamoto Y, Yano R, Miyatake K et al (2003) Effects of chitin and chitosan on blood coagulation. Carbohydr Polym 53:337–342CrossRefGoogle Scholar
  31. 31.
    Ostomel TA, Shi Q, Stoimenov PK et al (2007) Metal oxide surface charge mediated hemostasis. Langmuir 23:1233–11238CrossRefGoogle Scholar
  32. 32.
    Pusateri AE, Delgado AV, Dick EJ Jr et al (2004) Application of a granular mineral-based hemostatic agent (Quikclot) to reduce blood loss after grade V liver injury in swine. J Trauma 57:555–562CrossRefPubMedGoogle Scholar
  33. 33.
    Pusateri AE, McCarthy SJ, Gregory KW et al (2003) Effect of a chitosan-based hemostatic dressing on blood loss and survival in a model of severe venous hemorrhage and hepatic injury in swine. J Trauma 54:177–182CrossRefPubMedGoogle Scholar
  34. 34.
    Pusateri AE, Modrow HE, Harris RA et al (2003) Advanced hemostatic dressing development program: animal model selection criteria and results of a study of nine hemostatic dressings in a model of severe large venous and hepatic injury in swine. J Trauma 55:518–526CrossRefPubMedGoogle Scholar
  35. 35.
    Sauaia A, Moore FA, Moore EE et al (1995) Epidemiology of trauma deaths: a reassessment. J Trauma 38:185–193CrossRefPubMedGoogle Scholar
  36. 36.
    Ward KR, Tiba MH, Holbert WH et al (2007) Comparison of a new hemostatic agent to current combat hemostatic agents in a swine model of lethal extremity arterial hemorrhage. J Trauma 63:276–284CrossRefPubMedGoogle Scholar
  37. 37.
    Watters JM, Van PY, Hamilton GJ et al (2011) Advanced hemostatic dressings are not superior to gauze for care under fire scenarios. J Trauma 70:1413–1419CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Abteilung für Allgemein- und Viszeralchirurgie, Sektion GefäßchirurgieBundeswehrkrankenhaus HamburgHamburgDeutschland
  2. 2.Klinik und Poliklinik für GefäßmedizinUniversitäres Herzzentrum GmbH, Universitätsklinikum Hamburg-EppendorfHamburgDeutschland

Personalised recommendations