Skip to main content
Log in

Biomechanik der Implantataugmentation

Biomechanics of implant augmentation

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Mit steigender Inzidenz osteoporotischer Frakturen sind zukünftig neue Behandlungsstrategien zu deren adäquater Versorgung unerlässlich.

Fragestellung

Die Implantataugmentation mit Knochenzementen bildet einen vielversprechenden Ansatz. Nutzen und Risiken sind detailliert zu bewerten.

Material und Methode

Experimentelle Untersuchung des biomechanischen Potenzials und der verbundenen Risiken mit speziellem Fokus auf Frakturen des osteoporotischen proximalen Femurs und des proximalen Humerus.

Ergebnisse

Schon mit kleinen Mengen Knochenzement (3 ml) lassen sich beispielsweise am proximalen Femur in Verbindung mit intramedullärer Nagelung die Lastzyklen bis zum Versagen um mehr als 50 % steigern. Im Knochen entstehende Wärme und Drücke unterschreiten kritische Grenzwerte. Gelenknahe Platzierung des Zements scheint kurz- bis mittelfristig keine negativen Auswirkungen auf den angrenzenden Knorpel zu haben. Die Gefahr von Leckagen ist zu beachten.

Schlussfolgerungen

Die Implantataugmentation bietet großes biomechanisches Potenzial, um mechanische Komplikationen nach Frakturversorgung im osteoporotischen Knochen zu vermeiden. Eine frühe und aktive Mobilisierung des älteren Patienten scheint daher möglich. Auftretende Risiken können bei fachgerechter Anwendung als beherrschbar eingestuft werden. Die überzeugenden experimentellen Ergebnisse dürfen aber nicht dazu verleiten, die Augmentation als Generallösung für die Versorgung osteoporotischer Frakturen zu betrachten. Die Anwendung des Konzepts bedarf einer sorgfältigen, individuellen Abklärung und ist immer im Gesamtkontext zu sehen.

Abstract

Background

The rising incidence of osteoporotic fractures requires novel treatment strategies.

Objective

Implant augmentation with bone cement is considered to be a promising approach but the benefits and risks need to be carefully evaluated.

Methods

Experimental investigation of the biomechanical potential and the associated risks with special reference to the osteoporotic proximal femur and proximal humerus.

Results

Even small amounts of bone cement (3 ml) applied to the proximal femur in combination with intramedullary nailing led to more than a 50 % increase in the number of test cycles before failure. The heat and pressure generated in the bone did not exceed critical thresholds. Short to midterm effects of subchondral cement placement on the adjacent cartilage can be excluded. The risk for cement leakage needs to be considered.

Conclusion

Implant augmentation offers high biomechanical potential to prevent mechanical complications after fracture fixation in osteoporotic bone. Early and confident mobilization of elderly patients therefore appears to be possible. With appropriate handling, associated risks seem controllable; however, implant augmentation cannot be applied as a routine concept for osteoporotic fracture management. The application requires careful evaluation on a case by case basis under comprehensive consideration of mechanical and biological factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Arens D, Rothstock S, Windolf M et al (2011) Bone marrow modified acrylic bone cement for augmentation of osteoporotic cancellous bone. J Mech Behav Biomed Mater 4:2081–2089

    Article  CAS  PubMed  Google Scholar 

  2. Baroud G, Bohner M, Heini P et al (2004) Injection biomechanics of bone cements used in vertebroplasty. Biomed Mater Eng 14:487–504

    CAS  PubMed  Google Scholar 

  3. Baumgaertner MR, Solberg BD (1997) Awareness of tip-apex distance reduces failure of fixation of trochanteric fractures of the hip. J Bone Joint Surg Br 79:969–971

    Article  CAS  PubMed  Google Scholar 

  4. Blankstein M, Widmer D, Gotzen M et al (2014) Assessment of intraosseous femoral head pressures during cement augmentation of the perforated proximal femur nail antirotation blade. J Orthop Trauma 28:398–402

    Article  PubMed  Google Scholar 

  5. Blazejak M, Hofmann-Fliri L, Buchler L et al (2013) In vitro temperature evaluation during cement augmentation of proximal humerus plate screw tips. Injury 44:1321–1326

    Article  PubMed  Google Scholar 

  6. Boger A, Heini P, Windolf M et al (2007) Adjacent vertebral failure after vertebroplasty: a biomechanical study of low-modulus PMMA cement. Eur Spine J 16:2118–2125

    Article  PubMed Central  PubMed  Google Scholar 

  7. Boger A, Wheeler DL (2010) A medium viscous acrylic cement enhances uniformity of cement filling and reduces leakage in cancellous bone augmentation. ISRN Mater Sci 780510

  8. Boner V, Kuhn P, Mendel T et al (2009) Temperature evaluation during PMMA screw augmentation in osteoporotic bone–an in vitro study about the risk of thermal necrosis in human femoral heads. J Biomed Mater Res B Appl Biomater 90:842–848

    Article  PubMed  Google Scholar 

  9. Christiansen C (1991) Consensus development conference: prophylaxis and treatment of osteoporosis. Am J Med 90:107–110

  10. Court-Brown CM, Caesar B (2006) Epidemiology of adult fractures: a review. Injury 37:691–697

    Article  Google Scholar 

  11. Davis TR, Sher JL, Horsman A et al (1990) Intertrochanteric femoral fractures. Mechanical failure after internal fixation. J Bone Joint Surg Br 72:26–31

    CAS  PubMed  Google Scholar 

  12. Fliri L, Lenz M, Boger A et al (2012) Ex vivo evaluation of the polymerization temperatures during cement augmentation of proximal femoral nail antirotation blades. J Trauma Acute Care Surg 72:1098–1101

    PubMed  Google Scholar 

  13. Goetzen M, Hofmann-Fliri L, Arens D et al (2015) Does metaphyseal cement augmentation in fracture management influence the adjacent subchondral bone and joint cartilage?: an in vivo study in sheep stifle joints. Medicine (Baltimore) 94:e414

    Article  Google Scholar 

  14. Grueneweller N, Raschke MJ, Widmer D et al (2014) Biomechanischer Vergleich augmentierter und nicht-augmentierter SI-Schrauben im Hemi-Pelvis-Model. In: DKOU. Berlin, Germany

  15. Jensen JS, Tondevold E (1979) Mortality after hip fractures. Acta Orthop Scand 50:161–167

    Article  CAS  PubMed  Google Scholar 

  16. Kammerlander C, Doshi H, Gebhard F et al (2013) Long-term results of the augmented PFNA: a prospective multicenter trial. Arch Orthop Trauma Surg 134(3):343–349

  17. Kathrein S, Kralinger F, Blauth M et al. (2013) Biomechanical comparison of an angular stable plate with augmented and non-augmented screws in a newly developed shoulder test bench. Clin Biomech (Bristol, Avon) 28:273–277

    Article  Google Scholar 

  18. Mead RN, Ryu J, Liu S et al. (2012) Supraphysiologic temperature enhances cytotoxic effects of bupivacaine on bovine articular chondrocytes in an in vitro study. Arthroscopy 28:397–404

    Article  PubMed Central  PubMed  Google Scholar 

  19. Nicolino T, Goetzen M, Hofmann-Fliri L et al (2013) Implant augmentation in osteoporotic femoral neck fractures: No biomechanical advantage in a cadaveric model. Eur J Emerg Surg (ECTES) 39(Suppl 1):70

    Google Scholar 

  20. Palmer SJ, Parker MJ, Hollingworth W (2000) The cost and implications of reoperation after surgery for fracture of the hip. J Bone Joint Surg Br 82:864–866

    Article  CAS  PubMed  Google Scholar 

  21. Roderer G, Scola A, Schmolz W et al (2013) Biomechanical in vitro assessment of screw augmentation in locked plating of proximal humerus fractures. Injury 44:1327–1332

    Article  PubMed  Google Scholar 

  22. Sermon A, Boner V, Boger A et al (2012) Potential of polymethylmethacrylate cement-augmented helical proximal femoral nail antirotation blades to improve implant stability–a biomechanical investigation in human cadaveric femoral heads. J Trauma Acute Care Surg 72:E54–59

    CAS  PubMed  Google Scholar 

  23. Sermon A, Hofmann-Fliri L, Richards RG et al (2014) Cement augmentation of hip implants in osteoporotic bone: how much cement is needed and where should it go? J Orthop Res 32:362–368

    Article  CAS  PubMed  Google Scholar 

  24. Solberg BD, Moon CN, Franco DP et al (2009) Locked plating of 3- and 4-part proximal humerus fractures in older patients: the effect of initial fracture pattern on outcome. J. Orthop. Trauma 23:113–119

    Article  PubMed  Google Scholar 

  25. Suhm N, Hengg C, Schwyn R et al (2007) Mechanical torque measurement predicts load to implant cut-out: a biomechanical study investigating DHS anchorage in femoral heads. Arch Orthop Trauma Surg 127:469–474

    Article  PubMed  Google Scholar 

  26. Voigt C, Woltmann A, Partenheimer A et al (2007) [Management of complications after angularly stable locking proximal humerus plate fixation]. Chirurg 78:40–46

    Article  CAS  PubMed  Google Scholar 

  27. Von Der Linden P, Gisep A, Boner V et al (2006) Biomechanical evaluation of a new augmentation method for enhanced screw fixation in osteoporotic proximal femoral fractures. J Orthop Res 24:2230–2237

    Article  CAS  PubMed  Google Scholar 

  28. Who (2004) Scientific group on the assessment of osteoporosis at primary health care level. Summary Meeting Report, Brussels, Begium (5–7 May 2004)

    Google Scholar 

  29. Widmer D, Muench C, Forte M et al (2014) Cement augmentation of a proximal humerus plate for osteoporotic fracture. Numerical analysis of a complex problem. Eur J Trauma Emerg Surg (ECTES) 40 (Suppl 1):188

    Google Scholar 

  30. Windolf M, Braunstein V, Dutoit C et al (2009) Is a helical shaped implant a superior alternative to the Dynamic Hip Screw for unstable femoral neck fractures? A biomechanical investigation. Clin Biomech (Bristol, Avon) 24:59–64

    Article  Google Scholar 

Download references

Danksagung

Die dargestellten biomechanischen Grundlagen wurden in verschiedenen Einzelstudien erarbeitet, welche freundlicherweise durch die AO Stiftung über das AOTrauma Netzwerk finanziert wurden (Grant-Nummer AR2008_01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Windolf.

Ethics declarations

Interessenkonflikt

M. Windolf gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Redaktion

F. Gebhard, Ulm

D. Höntzsch, Tübingen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Windolf, M. Biomechanik der Implantataugmentation. Unfallchirurg 118, 765–771 (2015). https://doi.org/10.1007/s00113-015-0050-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-015-0050-7

Schlüsselwörter

Keywords

Navigation