Advertisement

Monatsschrift Kinderheilkunde

, Volume 165, Issue 7, pp 560–571 | Cite as

C-reaktives Protein und andere immunologische Biomarker

Sinn und Unsinn in der Infektionsdiagnostik
  • T. Niehues
Leitthema

Zusammenfassung

Die Untersuchung von Laborbiomarkern wird im klinischen Alltag des Kinderarztes extrem häufig eingesetzt. Auf Basis einer breiten Literatursuche wird die Evidenz zum Einsatz von Biomarkern für das Management von Infektionen, insbesondere von schweren bakteriellen Infektionen (SBI), analysiert. Vor dem Hintergrund der physiologischen Entzündungsreaktion wird die Rolle klassischer Entzündungsmarker wie C‑reaktives Protein (CRP) und Prokalzitonin (PCT), von Zytokinen und hämatologischen Markern (z. B. Blutbild) sowie neuer Laborverfahren (z. B. Transkriptom- und Proteomanalysen) bei der Infektionsdiagnostik in übersichtlicher Form dargestellt. Es wird diskutiert, ob ein generelles Screening mit Labormarkern in der Notfallsituation sinnvoll ist, ob Laborbiomarker zwischen bakteriellen und nichtbakteriellen Infektionen unterscheiden können und wie gut sie sich für die Früherkennung und die Verlaufsbeurteilung von SBI eignen. Statistisch gesehen sind die Konzentrationen klassischer Biomarker wie CRP und PCT bei bakteriellen Infektionen zwar höher als bei viralen Infektionen, im Einzelfall hilft der einzelne CRP- oder PCT-Wert aber nicht bei der Unterscheidung. Die Kombination der Befunde aus Anamnese/körperlicher Untersuchung (klinisch-biometrische Biomarker) und Laborbiomarkern stellt den erfolgreichsten Ansatz zur Früherkennung von SBI dar. Mit Ausnahme der Neonatologie fehlen Daten aus gut durchgeführten klinischen Studien, um den Nutzen der Laborbiomarker für die Verlaufsbeurteilung und die Steuerung der Therapie zu belegen. Ein kritischerer Einsatz von Laborbiomarkern in Praxis und Klinik als bisher ist angezeigt, um unnötige Eingriffe und Therapien bei Kindern zu vermeiden.

Schlüsselwörter

Bakterielle Infektionen Virale Infektionen Prokalzitonin Zytokine Früherkennung Sepsis 

Abkürzungen

APP

Akute-Phase-Protein

APR

Akute-Phase-Reaktion

BSG

Blutkörperchensenkungsgeschwindigkeit („erythrocyte sedimentation rate“, ESR)

CD

„cluster of differentiation“

CRP

C-reaktives Protein

CSF

„cerebrospinal fluid“ (Liquor cerebrospinalis)

CXCL8

CXC-Motiv-Chemokinligand 8 (Interleukin-8)

D/PAMP

„damage/pathogen-associated molecular pattern“

FcRγ

Fc-Rezeptor‑γ

GBS

Gruppe-B-Streptokokken

G-CSF

Granulozyten-koloniestimulierender Faktor

GM-CSF

Granulozyten-Monozyten-koloniestimulierender Faktor

IBI

invasive bakterielle Infektion (Bakteriämie, Sepsis, Meningitis)

IFN

Interferon

IL

Interleukin

IP-10

„interferon-gamma induced protein 10“

LPS

Lipopolysaccharid

NPV

„negative predictive value“ (negativer Vorhersagewert)

PC

Phosphocholine

pCAP

„pediatric community-acquired pneumonia“ (außerhalb des Krankenhauses erworbene Pneumonie bei Kdr.)

PCT

Prokalzitonin

PPV

„positive predictive value“ (positiver Vorhersagewert)

PRR

„pattern recognition receptor“ (Mustererkennungsrezeptor)

RSV

Respiratory Syncytial Virus

SBI

schwere bakterielle Infektion (Sepsis, Meningitis, Appendizitis, Pneumonie, Osteomyelitis, Zellulitis, bakterielle Gastroenteritis, komplizierte Harnwegsinfektionen)

SSW

Schwangerschaftswoche

TNF-α

Tumor-Nekrose-Faktor-α

TRAIL

„tumor necrosis factor apoptosis inducing ligand“

WBC

„white blood cells“ (Leukozyten)

C-reactive protein and other immunological biomarkers

Sense and nonsense in the diagnosis of infectious diseases

Abstract

Laboratory biomarkers are very frequently employed for in- and outpatient emergency work-up of children with infectious diseases and evaluation of severe bacterial infection (SBI). Based on a literature review, the evidence for the use of biomarkers in the management of infections was analyzed. The physiological inflammatory response and the role of classical inflammation markers, such as C‑reactive protein (CRP), procalcitonin (PCT), hematological (blood count) and new laboratory biomarkers (e. g. transcriptome and proteome analyses) are described. It is discussed whether a general screening with laboratory markers makes sense in emergency situations, whether laboratory biomarkers can differentiate between bacterial and non-bacterial infections and how well they are qualified for the early detection and evaluation of the course of SBI. On a purely statistical basis, the values of classical biomarkers, such as CRP and PCT are higher in bacterial than in viral infections; however, in the individual case a single, isolated CRP or PCT value does not reliably help to differentiate. The combined use of findings from taking a patient history/physical examination (clinical biometric biomarkers) and laboratory biomarkers is the most successful approach to improve early detection of SBI. Except in neonatology reliable data regarding the benefit of laboratory biomarkers for assessment of progress and steering therapy are missing. A more critical use of laboratory biomarkers in Pediatrics would be desirable in order to prevent unnecessary medical interventions and therapy in children.

Keywords

Bacterial infections Viral infections Procalcitonin Cytokines Early diagnosis of sepsis 

Notes

Danksagung

Für die kritische und konstruktive Durchsicht des Manuskripts danke ich folgenden Kollegen: Dres. Marion Riffelmann (Krefeld), Peter Heister, Gregor Dückers (beide Krefeld). Die Herstellung des Manuskripts wäre ohne die intensive sekretarielle Bearbeitung von Andrea Groth nicht möglich gewesen.

Einhaltung ethischer Richtlinien

Interessenkonflikt

T. Niehues gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Anonymous (2012) In: Antibiotics for Early-Onset Neonatal Infection: Antibiotics for the Prevention and Treatment of Early-Onset Neonatal Infection. LondonGoogle Scholar
  2. 2.
    Appenzeller C, Ammann RA, Duppenthaler A et al (2002) Serum C‑reactive protein in children with adenovirus infection. Swiss Med Wkly 132:345–350PubMedGoogle Scholar
  3. 3.
    Bauchner H (2016) Genetics and the evaluation of the febrile child. JAMA 316:824–825CrossRefPubMedGoogle Scholar
  4. 4.
    Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95CrossRefGoogle Scholar
  5. 5.
    Bradley JS, Byington CL, Shah SS et al (2011) The management of community-acquired pneumonia in infants and children older than 3 months of age: clinical practice guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin Infect Dis 53:e25–76CrossRefPubMedGoogle Scholar
  6. 6.
    Chiesa C, Osborn JF, Pacifico L et al (2011) Gestational- and age-specific CRP reference intervals in the newborn. Clin Chim Acta 412:1889–1890CrossRefPubMedGoogle Scholar
  7. 7.
    Du Clos TW (2013) Pentraxins: structure, function, and role in inflammation. ISRN Inflamm 2013:379040PubMedPubMedCentralGoogle Scholar
  8. 8.
    Dagan R, Powell KR, Hall CB et al (1985) Identification of infants unlikely to have serious bacterial infection although hospitalized for suspected sepsis. J Pediatr 107:855–860CrossRefPubMedGoogle Scholar
  9. 9.
    Dupuy AM, Philippart F, Pean Y et al (2013) Role of biomarkers in the management of antibiotic therapy: an expert panel review: I – currently available biomarkers for clinical use in acute infections. Ann Intensive Care 3:22CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ehl S, Gering B, Bartmann P et al (1997) C‑reactive protein is a useful marker for guiding duration of antibiotic therapy in suspected neonatal bacterial infection. Pediatrics 99:216–221CrossRefPubMedGoogle Scholar
  11. 11.
    Friedman JN, Rieder MJ, Walton JM et al (2014) Bronchiolitis: recommendations for diagnosis, monitoring and management of children one to 24 months of age. Paediatr Child Health 19:485–498CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gomez B, Mintegi S, Bressan S et al (2016) Validation of the “step-by-step” approach in the management of young febrile infants. Pediatrics 138. doi:  10.1542/peds.2015-4381 Google Scholar
  13. 13.
    Haeusler GM, Mechinaud F, Daley AJ et al (2013) Antibiotic-resistant Gram-negative bacteremia in pediatric oncology patients – risk factors and outcomes. Pediatr Infect Dis J 32:723–726CrossRefPubMedGoogle Scholar
  14. 14.
    Hedegaard SS, Wisborg K, Hvas AM (2015) Diagnostic utility of biomarkers for neonatal sepsis – a systematic review. Infect Dis 47:117–124CrossRefGoogle Scholar
  15. 15.
    Herberg JA, Kaforou M, Wright VJ et al (2016) Diagnostic test accuracy of a 2-transcript host RNA signature for discriminating bacterial vs viral infection in febrile children. JAMA 316:835–845CrossRefPubMedGoogle Scholar
  16. 16.
    Hornik CP, Benjamin DK, Becker KC et al (2012) Use of the complete blood cell count in late-onset neonatal sepsis. Pediatr Infect Dis J 31:803–807CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    van Houten CB, de Groot JAH, Klein A, Srugo I, Chistyakov I, de Waal W, Meijssen CB, Avis W, Wolfs TFW, Shachor-Meyouhas Y, Stein M, Sanders EAM, Bont LJ (2016) A host-protein based assay to differentiate between bacterial and viral infections in preschool children (OPPORTUNITY): a double-blind, multicentre, validation study. Lancet Infect Dis 17(4):431–440. doi: 10.1016/S1473-3099(16)30519-9. Epub 2016 Dec 22. PMID: 28012942
  18. 18.
    Jaskiewicz JA, Mccarthy CA, Richardson AC et al (1994) Febrile infants at low risk for serious bacterial infection – an appraisal of the Rochester criteria and implications for management. Febrile Infant Collaborative Study Group. Pediatrics 94:390–396PubMedGoogle Scholar
  19. 19.
    Kan B, Razzaghian HR, Lavoie PM (2016) An immunological perspective on neonatal sepsis. Trends Mol Med 22:290–302CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kapasi AJ, Dittrich S, Gonzalez IJ et al (2016) Host biomarkers for distinguishing bacterial from non-bacterial causes of acute febrile illness: a comprehensive review. PLoS ONE 11:e0160278CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Karakurt DG, Demirsoy U, Corapcioglu F et al (2014) Do proinflammatory cytokine levels predict serious complication risk of infection in pediatric cancer patients? Pediatr Hematol Oncol 31:415–424CrossRefPubMedGoogle Scholar
  22. 22.
    Kruger S, Ewig S, Papassotiriou J et al (2009) Inflammatory parameters predict etiologic patterns but do not allow for individual prediction of etiology in patients with CAP: results from the German competence network CAPNETZ. Respir Res 10:65CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kuppermann N, Mahajan P (2016) Role of serum procalcitonin in identifying young febrile infants with invasive bacterial infections: one step closer to the holy grail? JAMA Pediatr 170:17–18CrossRefPubMedGoogle Scholar
  24. 24.
    Kushner I (2015) Acute phase reactants. UpToDateGoogle Scholar
  25. 25.
    Lawn JE, Blencowe H, Kinney MV et al (2016) Evidence to inform the future for maternal and newborn health. Best practice & research. Clin Obstet Gynaecol 36:169–183Google Scholar
  26. 26.
    Lin SG, Hou TY, Huang DH et al (2012) Role of procalcitonin in the diagnosis of severe infection in pediatric patients with fever and Neutropenia – a systemic review and meta-analysis. Pediatr Infect Dis J 31:e182–188PubMedGoogle Scholar
  27. 27.
    Machado JR, Soave DF, da Silva MV et al (2014) Neonatal sepsis and inflammatory mediators. Mediators Inflamm 2014:269681CrossRefPubMedGoogle Scholar
  28. 28.
    Mahajan P, Kuppermann N, Mejias A et al (2016) Association of RNA biosignatures with bacterial infections in febrile infants aged 60 days or younger. JAMA 316:846–857CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Meem M, Modak JK, Mortuza R et al (2011) Biomarkers for diagnosis of neonatal infections: a systematic analysis of their potential as a point-of-care diagnostics. J Glob Health 1:201–209PubMedPubMedCentralGoogle Scholar
  30. 30.
    Milcent K, Faesch S, Gras-Le Guen C et al (2016) Use of procalcitonin assays to predict serious bacterial infection in young febrile infants. JAMA Pediatr 170:62–69CrossRefPubMedGoogle Scholar
  31. 31.
    Niehues T (2013) The febrile child: diagnosis and treatment. Dtsch Arztebl Int 110:764–773 (quiz 774)PubMedPubMedCentralGoogle Scholar
  32. 32.
    Nuriel-Ohayon M, Neuman H, Koren O (2016) Microbial changes during pregnancy, birth, and infancy. Front Microbiol 7:1031CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Oved K, Cohen A, Boico O et al (2015) A novel host-proteome signature for distinguishing between acute bacterial and viral infections. PLoS ONE 10:e0120012CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Phillips RS, Wade R, Lehrnbecher T et al (2012) Systematic review and meta-analysis of the value of initial biomarkers in predicting adverse outcome in febrile neutropenic episodes in children and young people with cancer. BMC Med 10:6CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Simons JP, Loeffler JM, Al-Shawi R et al (2014) C‑reactive protein is essential for innate resistance to pneumococcal infection. Immunology 142:414–420CrossRefPubMedGoogle Scholar
  36. 36.
    Slaats J, Ten Oever J, Van De Veerdonk FL et al (2016) IL-1beta/IL-6/CRP and IL-18/ferritin: distinct inflammatory programs in infections. PLOS Pathog 12:e1005973CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5:463–466CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Thompson M, Van Den Bruel A, Verbakel J et al (2012) Systematic review and validation of prediction rules for identifying children with serious infections in emergency departments and urgent-access primary care. Health Technol Assess (Rockv) 16:1–100Google Scholar
  39. 39.
    Toikka P, Irjala K, Juven T et al (2000) Serum procalcitonin, C‑reactive protein and interleukin-6 for distinguishing bacterial and viral pneumonia in children. Pediatr Infect Dis J 19:598–602CrossRefPubMedGoogle Scholar
  40. 40.
    Van Den Bruel A (2015) The triumph of medicine: how overdiagnosis is turning healthy people into patients. Fam Pract 32:127–128CrossRefPubMedGoogle Scholar
  41. 41.
    Van Den Bruel A, Haj-Hassan T, Thompson M et al (2010) Diagnostic value of clinical features at presentation to identify serious infection in children in developed countries: a systematic review. Lancet 375:834–845CrossRefPubMedGoogle Scholar
  42. 42.
    Van Den Bruel A, Thompson MJ, Haj-Hassan T et al (2011) Diagnostic value of laboratory tests in identifying serious infections in febrile children: systematic review. BMJ 342:d3082CrossRefPubMedGoogle Scholar
  43. 43.
    Van Den Bruel A, Thompson M, Buntinx F et al (2012) Clinicians’ gut feeling about serious infections in children: observational study. BMJ 345:e6144CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Van Den Bruel A, Jones C, Thompson M et al (2016) C‑reactive protein point-of-care testing in acutely ill children: a mixed methods study in primary care. Arch Dis Child 101:382–385CrossRefPubMedGoogle Scholar
  45. 45.
    Verbakel JY, Lemiengre MB, De Burghgraeve T et al (2016) Should all acutely ill children in primary care be tested with point-of-care CRP: a cluster randomised trial. BMC Med 14:131CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Waage A, Brandtzaeg P, Halstensen A et al (1989) The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1, and fatal outcome. J Exp Med 169:333–338CrossRefPubMedGoogle Scholar
  47. 47.
    Yo CH, Hsieh PS, Lee SH et al (2012) Comparison of the test characteristics of procalcitonin to C‑reactive protein and leukocytosis for the detection of serious bacterial infections in children presenting with fever without source: a systematic review and meta-analysis. Ann Emerg Med 60:591–600CrossRefPubMedGoogle Scholar
  48. 48.
    Zhou M, Cheng S, Yu J et al (2015) Interleukin-8 for diagnosis of neonatal sepsis: a meta-analysis. PLOS ONE 10:e0127170CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  1. 1.Zentrum für Kinder- und JugendmedizinHELIOS Klinikum Krefeld, Akademisches Lehrkrankenhaus, RWTH AachenKrefeldDeutschland

Personalised recommendations