A novel podocyte protein, R3h domain containing-like, inhibits TGF-β-induced p38 MAPK and regulates the structure of podocytes and glomerular basement membrane

Abstract

Not only in kidney glomerular physiological function but also glomerular pathology especially in diabetic condition, glomerular podocytes play pivotal roles. Therefore, it is important to increase our knowledge about the genes and proteins expressed in podocytes. Recently, we have identified a novel podocyte-expressed gene, R3h domain containing-like (R3hdml) and analyzed its function in vivo as well as in vitro. Transforming growth factor-β (TGF-β) signaling regulated the expression of R3hdml. And R3hdml inhibited p38 mitogen-activated protein kinase phosphorylation, which was induced by TGF-β, leading to the amelioration of podocyte apoptosis. Furthermore, a lack of R3hdml in mice significantly worsened glomerular function in streptozotocin (STZ)-induced diabetes, while overexpression of R3hdml ameliorated albuminuria in STZ-induced diabetes. Our results surmise that the functional analyses of R3hdml may lead to the development of novel therapeutic strategies for diabetic nephropathy in the future.

Key messages

• A novel podocyte expressed protein R3h domain containing-like was identified.

• R3HDML inhibits podocyte apoptosis by inhibiting TGF-β-mediated p38 MAPK signaling.

• Overexpression of R3HDML ameliorates albuminuria in STZ-induced diabetes mice.

• R3HDML may prove to be a novel therapeutic strategy for diabetic nephropathy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data availability

Data and material are available upon request to the corresponding author.

References

  1. 1.

    Eremina V, Baelde HJ, Quaggin SE (2007) Role of the VEGF--a signaling pathway in the glomerulus: evidence for crosstalk between components of the glomerular filtration barrier. Nephron Physiol 106:32–37

    Article  CAS  Google Scholar 

  2. 2.

    Lee HS (2011) Pathogenic role of TGF-beta in the progression of podocyte diseases. Histol Histopathol 26:107–116

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Davis B, Dei Cas A, Long DA, White KE, Hayward A, Ku CH, Woolf AS, Bilous R, Viberti G, Gnudi L (2007) Podocyte-specific expression of angiopoietin-2 causes proteinuria and apoptosis of glomerular endothelia. J Am Soc Nephrol 18:2320–2329

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Pagtalunan ME, Miller PL, Jumping-Eagle S, Nelson RG, Myers BD, Rennke HG, Coplon NS, Sun L, Meyer TW (1997) Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest 99:342–348

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Wiggins RC (2007) The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int 71:1205–1214

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Patrakka J, Tryggvason K (2010) Molecular make-up of the glomerular filtration barrier. Biochem Biophys Res Commun 396:164–169

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Garg P (2018) A review of podocyte biology. Am J Nephrol 47(Suppl 1):3–13

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Takemoto M, He L, Norlin J, Patrakka J, Xiao Z, Petrova T, Bondjers C, Asp J, Wallgard E, Sun Y et al (2006) Large-scale identification of genes implicated in kidney glomerulus development and function. EMBO J 25:1160–1174

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Betsholtz C, He L, Takemoto M (2007) The glomerular transcriptome and proteome. Nephron Exp Nephrol 106:e32–e36

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Ishibashi R, Takemoto M, Akimoto Y, Ishikawa T, He P, Maezawa Y, Sakamoto K, Tsurutani Y, Ide S, Ide K et al (2016) A novel podocyte gene, semaphorin 3G, protects glomerular podocyte from lipopolysaccharide-induced inflammation. Sci Rep 6:25955

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Wu DT, Bitzer M, Ju W, Mundel P, Böttinger EP (2005) TGF-beta concentration specifies differential signaling profiles of growth arrest/differentiation and apoptosis in podocytes. J Am Soc Nephrol 16:3211–3221

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Endlich K, Kriz W, Witzgall R (2001) Update in podocyte biology. Curr Opin Nephrol Hypertens 10:331–340

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Perico L, Conti S, Benigni A, Remuzzi G (2016) Podocyte-actin dynamics in health and disease. Nat Rev Nephrol 12:692–710

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Garg P, Verma R, Cook L, Soofi A, Venkatareddy M, George B, Mizuno K, Gurniak C, Witke W, Holzman LB (2010) Actin-depolymerizing factor cofilin-1 is necessary in maintaining mature podocyte architecture. J Biol Chem 285:22676–22688

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Gibbs GM, Roelants K, O'Bryan MK (2008) The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins--roles in reproduction, cancer, and immune defense. Endocr Rev 29:865–897

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Sakamoto K, Furuichi Y, Yamamoto M et al (2019) R3hdml regulates satellite cell proliferation and differentiation. EMBO Rep 20:e47957

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Maezawa Y, Onay T, Scott RP, Keir LS, Dimke H, Li C, Eremina V, Maezawa Y, Jeansson M, Shan J et al (2014) Loss of the podocyte-expressed transcription factor Tcf21/Pod1 results in podocyte differentiation defects and FSGS. J Am Soc Nephrol 25:2459–2470

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Liu A, Dardik A, Ballermann BJ (1999) Neutralizing TGF-beta1 antibody infusion in neonatal rat delays in vivo glomerular capillary formation 1. Kidney Int 56:1334–1348

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Lee HS, Song CY (2010) Effects of TGF-beta on podocyte growth and disease progression in proliferative podocytopathies. Kidney Blood Press Res 33:24–29

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Trachtman H, Fervenza FC, Gipson DS, Heering P, Jayne DRW, Peters H, Rota S, Remuzzi G, Rump LC, Sellin LK et al (2011) A phase 1, single-dose study of fresolimumab, an anti-TGF-beta antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int 79:1236–1243

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Mezzano SA, Aros CA, Droguett A et al (2003) Renal angiotensin II up-regulation and myofibroblast activation in human membranous nephropathy. Kidney Int Suppl 86:S39–S45

    CAS  Article  Google Scholar 

  22. 22.

    Koshizaka M, Takemoto M, Sato S et al (2012) An angiotensin II type 1 receptor blocker prevents renal injury via inhibition of the Notch pathway in Ins2 Akita diabetic mice. Exp Diabetes Res 2012:159874

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. 23.

    Fujimoto M, Maezawa Y, Yokote K, Joh K, Kobayashi K, Kawamura H, Nishimura M, Roberts AB, Saito Y, Mori S (2003) Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochem Biophys Res Commun 305:1002–1007

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Sato S, Kawamura H, Takemoto M, Maezawa Y, Fujimoto M, Shimoyama T, Koshizaka M, Tsurutani Y, Watanabe A, Ueda S et al (2009) Halofuginone prevents extracellular matrix deposition in diabetic nephropathy. Biochem Biophys Res Commun 379:411–416

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Hathaway CK, Gasim AM, Grant R et al (2015) Low TGFbeta1 expression prevents and high expression exacerbates diabetic nephropathy in mice. Proc Natl Acad Sci U S A 112:5815–5820

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Sayers R, Kalluri R, Rodgers KD, Shield CF, Meehan DT, Cosgrove D (1999) Role for transforming growth factor-beta1 in alport renal disease progression. Kidney Int 56:1662–1673

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Patek CE, Fleming S, Miles CG, Bellamy CO, Ladomery M, Spraggon L, Mullins J, Hastie ND, Hooper ML (2003) Murine Denys-Drash syndrome: evidence of podocyte de-differentiation and systemic mediation of glomerulosclerosis. Hum Mol Genet 12:2379–2394

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Mu Y, Gudey SK, Landstrom M (2012) Non-Smad signaling pathways. Cell Tissue Res 347:11–20

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Stambe C, Nikolic-Paterson DJ, Hill PA, Dowling J, Atkins RC (2004) p38 Mitogen-activated protein kinase activation and cell localization in human glomerulonephritis: correlation with renal injury. J Am Soc Nephrol 15:326–336

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Sakai N, Wada T, Furuichi K, Iwata Y, Yoshimoto K, Kitagawa K, Kokubo S, Kobayashi M, Hara A, Yamahana J et al (2005) Involvement of extracellular signal-regulated kinase and p38 in human diabetic nephropathy. Am J Kidney Dis 45:54–65

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Shao X, Zhang X, Hu J, Gao T, Chen J, Xu C, Wei C (2020) Dopamine 1 receptor activation protects mouse diabetic podocytes injury via regulating the PKA/NOX-5/p38 MAPK axis. Exp Cell Res 388:111849

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Lim AK, Nikolic-Paterson DJ, Ma FY et al (2009) Role of MKK3-p38 MAPK signalling in the development of type 2 diabetes and renal injury in obese db/db mice. Diabetologia 52:347–358

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Koshikawa M, Mukoyama M, Mori K, Suganami T, Sawai K, Yoshioka T, Nagae T, Yokoi H, Kawachi H, Shimizu F et al (2005) Role of p38 mitogen-activated protein kinase activation in podocyte injury and proteinuria in experimental nephrotic syndrome. J Am Soc Nephrol 16:2690–2701

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Pengal R, Guess AJ, Agrawal S, Manley J, Ransom RF, Mourey RJ, Benndorf R, Smoyer WE (2011) Inhibition of the protein kinase MK-2 protects podocytes from nephrotic syndrome-related injury. Am J Physiol Renal Physiol 301:F509–F519

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Connolly EC, Freimuth J, Akhurst RJ (2012) Complexities of TGF-beta targeted cancer therapy. Int J Biol Sci 8:964–978

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Voelker J, Berg PH, Sheetz M, Duffin K, Shen T, Moser B, Greene T, Blumenthal SS, Rychlik I, Yagil Y et al (2017) Anti-TGF-beta1 Antibody Therapy in Patients with Diabetic Nephropathy. J Am Soc Nephrol 28:953–962

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Yagi K, Furuhashi M, Aoki H, Goto D, Kuwano H, Sugamura K, Miyazono K, Kato M (2002) c-Myc is a downstream target of the Smad pathway. J Biol Chem 277:854–861

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Roberts AB, Wakefield LM (2003) The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci U S A 100:8621–8623

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Kobayashi K, Yokote K, Fujimoto M, Yamashita K, Sakamoto A, Kitahara M, Kawamura H, Maezawa Y, Asaumi S, Tokuhisa T et al (2005) Targeted disruption of TGF-beta-Smad3 signaling leads to enhanced neointimal hyperplasia with diminished matrix deposition in response to vascular injury. Circ Res 96:904–912

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Cho YS, Chen CH, Hu C, Long J, Ong RT, Sim X, Takeuchi F, Wu Y, Go MJ, Yamauchi T et al (2011) Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet 44:67–72

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Sakai K, Imamura M, Tanaka Y, Iwata M, Hirose H, Kaku K, Maegawa H, Watada H, Tobe K, Kashiwagi A et al (2013) Replication study for the association of 9 East Asian GWAS-derived loci with susceptibility to type 2 diabetes in a Japanese population. PLoS One 8:e76317

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Tossidou I, Starker G, Kruger J et al (2009) PKC-alpha modulates TGF-beta signaling and impairs podocyte survival. Cell Physiol Biochem 24:627–634

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Sekine Y, Nishibori Y, Akimoto Y, Kudo A, Ito N, Fukuhara D, Kurayama R, Higashihara E, Babu E, Kanai Y et al (2009) Amino acid transporter LAT3 is required for podocyte development and function. J Am Soc Nephrol 20:1586–1596

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Tsurutani Y, Fujimoto M, Takemoto M, Irisuna H, Koshizaka M, Onishi S, Ishikawa T, Mezawa M, He P, Honjo S et al (2011) The roles of transforming growth factor-beta and Smad3 signaling in adipocyte differentiation and obesity. Biochem Biophys Res Commun 407:68–73

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Sakamoto K, Kuno K, Takemoto M et al (2015) Pituitary adenylate cyclase-activating polypeptide protects glomerular podocytes from inflammatory injuries. J Diab Res 2015:727152

    Google Scholar 

  46. 46.

    Shankland SJ, Pippin JW, Reiser J, Mundel P (2007) Podocytes in culture: past, present, and future. Kidney Int 72:26–36

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Sakairi T, Abe Y, Jat PS, Kopp JB (2010) Cell-cell contact regulates gene expression in CDK4-transformed mouse podocytes. Am J Physiol Renal Physiol 299:F802–F809

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Takemoto M, Asker N, Gerhardt H, Lundkvist A, Johansson BR, Saito Y, Betsholtz C (2002) A new method for large scale isolation of kidney glomeruli from mice. Am J Pathol 161(3):799–805

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Ms. Naoko Tomoda (Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine) for their valuable technical assistance and Ms. Sachie Matubara, and Ms. Junri Hayakawa (Laboratory for Electron Microscopy, Kyorin University School of Medicine) for the technical assistance with electron microscopy. This study is supported by the Grants-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology; Ministry of Health, Labor and Welfare.

Contribution statement

T.I. performed most experiments. T.I., M.T., K.T., C.B., K.Y. conceived the ideas, designed the research. M.T. wrote the manuscript. Y.A. performed electro microscopic analysis. A.W., K.Y., K.S., Y.M., M.S., L.H.., K.T., C.B. assisted the experiments and statistics. Y.K. edited the manuscript. All authors discussed the results and commented on the manuscript.

Funding

This study is supported by the Grants-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology; Ministry of Health, Labor and Welfare.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Minoru Takemoto.

Ethics declarations

Disclosures

None.

Conflict of interest

All authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 23 kb)

ESM 2

(PPT 8425s kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, T., Takemoto, M., Akimoto, Y. et al. A novel podocyte protein, R3h domain containing-like, inhibits TGF-β-induced p38 MAPK and regulates the structure of podocytes and glomerular basement membrane. J Mol Med (2021). https://doi.org/10.1007/s00109-021-02050-w

Download citation

Keywords

  • Apoptosis
  • Diabetic nephropathy
  • Podocyte
  • p38mapk
  • TGF-β