Developmental delay with hypotrophy associated with homozygous functionally relevant REV3L variant

Abstract

REV3L encodes a catalytic subunit of DNA polymerase zeta (Pol zeta) which is essential for the tolerance of DNA damage by inducing translesion synthesis (TLS). So far, the only Mendelian disease associated with REV3L was Moebius syndrome (3 patients with dominant REV3L mutations causing monoallelic loss-of-function were reported). We describe a homozygous ultra-rare REV3L variant (T2753R) identified with whole exome sequencing in a child without Moebius syndrome but with developmental delay, hypotrophy, and dysmorphic features who was born to healthy parents (heterozygous carriers of the variant). The variant affects the amino acid adjacent to functionally important KKRY motif. By introducing an equivalent mutation (S1192R) into the REV3 gene in yeasts, we showed that, whereas it retained residual function, it caused clear dysfunction of TLS in the nucleus and instability of mitochondrial genetic information. In particular, the mutation increased UV sensitivity measured by cell survival, decreased both the spontaneous (P < 0.005) and UV-induced (P < 0.0001) mutagenesis rates of nuclear DNA and increased the UV-induced mutagenesis rates of mitochondrial DNA (P < 0.0005). We propose that our proband is the first reported case of a REV3L associated disease different from Moebius syndrome both in terms of clinical manifestations and inheritance (autosomal recessive rather than dominant).

Key messages

  • First description of a human recessive disorder associated with a REV3L variant.

  • A study in yeast showed that the variant affected the enzymatic function of the protein.

  • In particular, it caused increased UV sensitivity and abnormal mutagenesis rates.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Raw data from WES analysis is available on request.

References

  1. 1.

    Prakash S, Johnson RE, Prakash L (2005) Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem 74:317–353

    CAS  PubMed  Google Scholar 

  2. 2.

    Waters LS, Minesinger BK, Wiltrout ME, D’Souza S, Woodruff RV, Walker GC (2009) Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol Rev 73:134–154

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Zhong X, Garg P, Stith CM, Nick McElhinny SA, Kissling GE, Burgers PM, Kunkel TA (2006) The fidelity of DNA synthesis by yeast DNA polymerase zeta alone and with accessory proteins. Nucleic Acids Res 34:4731–4742

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Makarova AV, Burgers PM (2015) Eukaryotic DNA polymerase zeta. DNA Repair (Amst) 29:47–55

    CAS  Google Scholar 

  5. 5.

    Acharya N, Johnson RE, Prakash S, Prakash L (2006) Complex formation with Rev1 enhances the proficiency of Saccharomyces cerevisiae DNA polymerase zeta for mismatch extension and for extension opposite from DNA lesions. Mol Cell Biol 26:9555–9563

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Zhao L, Washington MT (2017) Translesion Synthesis: insights into the selection and switching of DNA polymerases. Genes (Basel) 8. https://doi.org/10.3390/genes8010024

  7. 7.

    Torres-Ramos CA, Prakash S, Prakash L (2002) Requirement of RAD5 and MMS2 for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae. Mol Cell Biol 22:2419–2426

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Brun J, Chiu RK, Wouters BG, Gray DA (2010) Regulation of PCNA polyubiquitination in human cells. BMC Res Notes 3:85

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Motegi A, Liaw HJ, Lee KY, Roest HP, Maas A, Wu X, Moinova H, Markowitz SD, Ding H, Hoeijmakers JH et al (2008) Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc Natl Acad Sci U S A 105:12411–12416

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Roche H, Gietz RD, Kunz BA (1994) Specificity of the yeast rev3 delta antimutator and REV3 dependency of the mutator resulting from a defect (rad1 delta) in nucleotide excision repair. Genetics 137:637–646

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Makarova AV, Stodola JL, Burgers PM (2012) A four-subunit DNA polymerase zeta complex containing Pol delta accessory subunits is essential for PCNA-mediated mutagenesis. Nucleic Acids Res 40:11618–11626

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Northam MR, Garg P, Baitin DM, Burgers PM, Shcherbakova PV (2006) A novel function of DNA polymerase zeta regulated by PCNA. EMBO J 25:4316–4325

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Northam MR, Robinson HA, Kochenova OV, Shcherbakova PV (2010) Participation of DNA polymerase zeta in replication of undamaged DNA in Saccharomyces cerevisiae. Genetics 184:27–42

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Szwajczak E, Fijalkowska IJ, Suski C (2017) The CysB motif of Rev3p involved in the formation of the four-subunit DNA polymerase zeta is required for defective-replisome-induced mutagenesis. Mol Microbiol 106:659–672

    CAS  PubMed  Google Scholar 

  15. 15.

    Nelson JR, Lawrence CW, Hinkle DC (1996) Deoxycytidyl transferase activity of yeast REV1 protein. Nature 382:729–731

    CAS  PubMed  Google Scholar 

  16. 16.

    Hara K, Hashimoto H, Murakumo Y, Kobayashi S, Kogame T, Unzai S, Akashi S, Takeda S, Shimizu T, Sato M (2010) Crystal structure of human REV7 in complex with a human REV3 fragment and structural implication of the interaction between DNA polymerase zeta and REV1. J Biol Chem 285:12299–12307

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Baranovskiy AG, Lada AG, Siebler HM, Zhang Y, Pavlov YI, Tahirov TH (2012) DNA polymerase delta and zeta switch by sharing accessory subunits of DNA polymerase delta. J Biol Chem 287:17281–17287

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Johnson RE, Prakash L, Prakash S (2012) Pol31 and Pol32 subunits of yeast DNA polymerase delta are also essential subunits of DNA polymerase zeta. Proc Natl Acad Sci U S A 109:12455–12460

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Gibbs PE, McGregor WG, Maher VM, Nisson P, Lawrence CW (1998) A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase zeta. Proc Natl Acad Sci U S A 95:6876–6880

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Lee YS, Gregory MT, Yang W (2014) Human Pol zeta purified with accessory subunits is active in translesion DNA synthesis and complements Pol eta in cisplatin bypass. Proc Natl Acad Sci U S A 111:2954–2959

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Li Z, Zhang H, McManus TP, McCormick JJ, Lawrence CW, Maher VM (2002) hREV3 is essential for error-prone translesion synthesis past UV or benzo[a]pyrene diol epoxide-induced DNA lesions in human fibroblasts. Mutat Res 510:71–80

    CAS  PubMed  Google Scholar 

  22. 22.

    Xie SH, Liu AL, Chen YY, Zhang L, Zhang HJ, Jin BX, Lu WH, Li XY, Lu WQ (2010) DNA damage and oxidative stress in human liver cell L-02 caused by surface water extracts during drinking water treatment in a waterworks in China. Environ Mol Mutagen 51:229–235

    CAS  PubMed  Google Scholar 

  23. 23.

    Wu F, Lin X, Okuda T, Howell SB (2004) DNA polymerase zeta regulates cisplatin cytotoxicity, mutagenicity, and the rate of development of cisplatin resistance. Cancer Res 64:8029–8035

    CAS  PubMed  Google Scholar 

  24. 24.

    Martin SK, Wood RD (2019) DNA polymerase zeta in DNA replication and repair. Nucleic Acids Res 47:8348–8361

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Raykov V, Marvin ME, Louis EJ, Maringele L (2016) Telomere dysfunction triggers palindrome formation independently of double-strand break repair mechanisms. Genetics 203:1659–1668

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Wang F, Li P, Shao Y, Li Y, Zhang K, Li M, Wang R, Zheng S, Wang Y, Song S, Feng S, Liu F, Xiao W, Li X (2020) Site-specific proteolytic cleavage prevents ubiquitination and degradation of human REV3L, the catalytic subunit of DNA polymerase zeta. Nucleic Acids Res 48:3619–3637

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Fritzen R, Delbos F, De Smet A, Palancade B, Canman CE, Aoufouchi S, Weill JC, Reynaud CA, Storck S (2016) A single aspartate mutation in the conserved catalytic site of Rev3L generates a hypomorphic phenotype in vivo and in vitro. DNA Repair (Amst) 46:37–46

    CAS  Google Scholar 

  28. 28.

    Singh B, Li X, Owens KM, Vanniarajan A, Liang P, Singh KK (2015) Human REV3 DNA Polymerase zeta localizes to mitochondria and protects the mitochondrial genome. PLoS One 10:e0140409. https://doi.org/10.1371/journal.pone.0140409

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Zhang H, Chatterjee A, Singh KK (2006) Saccharomyces cerevisiae polymerase zeta functions in mitochondria. Genetics 172:2683–2688

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Kalifa L, Sia EA (2007) Analysis of Rev1p and Pol zeta in mitochondrial mutagenesis suggests an alternative pathway of damage tolerance. DNA Repair (Amst) 6:1732–1739

    CAS  PubMed Central  Google Scholar 

  31. 31.

    Baruffini E, Serafini F, Ferrero I, Lodi T (2012) Overexpression of DNA polymerase zeta reduces the mitochondrial mutability caused by pathological mutations in DNA polymerase gamma in yeast. PLoS One 7:e34322. https://doi.org/10.1371/journal.pone.0034322

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    The NHLBI Trans-Omics for Precision Medicine (TOPMed) whole genome sequencing program. BRAVO variant browser: University of Michigan and NHLBI; 2018. Available from: https://bravo.sph.umich.edu/freeze5/hg38/

  33. 33.

    Chim N, Shi C, Sau SP, Nikoomanzar A, Chaput JC (2017) Structural basis for TNA synthesis by an engineered TNA polymerase. Nat Commun 8:1810

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Quinodoz M, Royer-Bertrand B, Cisarova K, Di Gioia SA, Superti-Furga A, Rivolta C (2017) DOMINO: using machine learning to predict genes associated with dominant disorders. Am J Hum Genet 101:623–629

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Jian X, Liu X (2017) In silico prediction of deleteriousness for nonsynonymous and splice-altering single nucleotide variants in the human genome. Methods Mol Biol 1498:191–197

    CAS  PubMed  Google Scholar 

  36. 36.

    Leman R, Gaildrat P, Le Gac G, Ka C, Fichou Y, Audrezet MP, Caux-Moncoutier V, Caputo SM, Boutry-Kryza N, Leone M et al (2018) Novel diagnostic tool for prediction of variant spliceogenicity derived from a set of 395 combined in silico/in vitro studies: an international collaborative effort. Nucleic Acids Res 46:7913–7923

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Swan MK, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2009) Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase delta. Nat Struct Mol Biol 16:979–986

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Kropp HM, Betz K, Wirth J, Diederichs K, Marx A (2017) Crystal structures of ternary complexes of archaeal B-family DNA polymerases. PLoS One 12:e0188005. https://doi.org/10.1371/journal.pone.0188005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Bergen K, Betz K, Welte W, Diederichs K, Marx A (2013) Structures of KOD and 9 degrees N DNA polymerases complexed with primer template duplex. Chembiochem 14:1058–1062

    CAS  PubMed  Google Scholar 

  40. 40.

    Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L (2005) The FoldX web server: an online force field. Nucleic Acids Res 33:W382–W388

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Broomfield S, Chow BL, Xiao W (1998) MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc Natl Acad Sci U S A 95:5678–5683

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Franklin MC, Wang J, Steitz TA (2001) Structure of the replicating complex of a pol alpha family DNA polymerase. Cell 105:657–667

    CAS  PubMed  Google Scholar 

  43. 43.

    Esteban-Jurado C, Franch-Exposito S, Munoz J, Ocana T, Carballal S, Lopez-Ceron M, Cuatrecasas M, Vila-Casadesus M, Lozano JJ, Serra E et al (2016) The Fanconi anemia DNA damage repair pathway in the spotlight for germline predisposition to colorectal cancer. Eur J Hum Genet 24:1501–1505

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Webb EL, Rudd MF, Sellick GS, El Galta R, Bethke L, Wood W, Fletcher O, Penegar S, Withey L, Qureshi M et al (2006) Search for low penetrance alleles for colorectal cancer through a scan of 1467 non-synonymous SNPs in 2575 cases and 2707 controls with validation by kin-cohort analysis of 14 704 first-degree relatives. Hum Mol Genet 15:3263–3271

    CAS  PubMed  Google Scholar 

  45. 45.

    Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404

    Google Scholar 

  46. 46.

    Zhang S, Chen H, Zhao X, Cao J, Tong J, Lu J, Wu W, Shen H, Wei Q, Lu D (2013) REV3L 3'UTR 460T>C polymorphism in microRNA target sites contributes to lung cancer susceptibility. Oncogene 32:242–250

    CAS  PubMed  Google Scholar 

  47. 47.

    Genetic Analysis of Psoriasis C, the Wellcome Trust Case Control C, Strange A, Capon F, Spencer CC, Knight J, Weale ME, Allen MH, Barton A, Band G et al (2010) A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet 42:985–990

    Google Scholar 

  48. 48.

    Kumar D (1990) Moebius syndrome. J Med Genet 27:122–126

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Tomas-Roca L, Tsaalbi-Shtylik A, Jansen JG, Singh MK, Epstein JA, Altunoglu U, Verzijl H, Soria L, van Beusekom E, Roscioli T, Iqbal Z, Gilissen C, Hoischen A, de Brouwer APM, Erasmus C, Schubert D, Brunner H, Pérez Aytés A, Marin F, Aroca P, Kayserili H, Carta A, de Wind N, Padberg GW, van Bokhoven H (2015) De novo mutations in PLXND1 and REV3L cause Mobius syndrome. Nat Commun 6:7199

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Patel RM, Liu D, Gonzaga-Jauregui C, Jhangiani S, Lu JT, Sutton VR, Fernbach SD, Azamian M, White L, Edmond JC, Paysse EA, Belmont JW, Muzny D, Lupski JR, Gibbs RA, Lewis RA, Lee BH, Lalani SR, Campeau PM (2017) An exome sequencing study of Moebius syndrome including atypical cases reveals an individual with CFEOM3A and a TUBB3 mutation. Cold Spring Harb Mol Case Stud 3:a000984

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Polish National Science Center Grant 2017/25/B/NZ3/01811 to A. K-G.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ewa Sledziewska-Gojska or Rafał Płoski.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable

Consent to participate

The parents (legal guardians of the child) commercially ordered a WES examination and gave written consent to the publication of the photographs of the proband.

Consent for publication

Not applicable

Code availability

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Fig. 1.
figure6

Photographs of the patient. (PNG 3223 kb)

High resolution image (TIF 20519 kb)

Supplementary material 2

. In depth presentation of the methods section. (DOCX 28 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Halas, A., Fijak-Moskal, J., Kuberska, R. et al. Developmental delay with hypotrophy associated with homozygous functionally relevant REV3L variant. J Mol Med 99, 415–423 (2021). https://doi.org/10.1007/s00109-020-02033-3

Download citation

Keywords

  • REV3L
  • DNA polymerase zeta
  • UV sensitivity
  • Mutagenesis
  • Mitochondrial DNA stability