Skip to main content

Advertisement

Log in

Macrophage-derived CCL18 promotes osteosarcoma proliferation and migration by upregulating the expression of UCA1

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Osteosarcoma (OS), which is the most common primary malignant bone tumor, has a high incidence of pulmonary metastasis. CCL18 (C-C motif chemokine ligand 18), which is secreted by tumor-associated macrophages (TAMs), has been found to be increased in various tumors and is associated with tumor metastasis. However, the role of CCL18 in OS remains unclear. Here, we evaluated the effect of CCL18 on the OS cell lines MG63 and 143B and explored its potential mechanisms. We found that CCL18 enhanced the proliferation and migration of OS cells and upregulated UCA1 through transcription factor EP300. Subsequently, we further revealed that the downstream Wnt/β-catenin signaling pathway participated in this process. In addition, the high expression of CCL18 in both tissue and serum from patients was closely related to pulmonary metastasis and poor survival in OS patients. The tumor xenograft models also showed that CCL18 promoted the metastasis of OS cells. Collectively, our study indicated that macrophage-derived CCL18 promotes OS proliferation and metastasis via the EP300/UCA1/Wnt/β-catenin pathway and that CCL18 may be used as a prognostic marker and therapeutic target of OS.

Key messages

  • CCL18 promotes proliferation and migration of osteosarcoma cells by EP300/ UCA1/ Wnt/β-catenin pathway.

  • CCL18+ TAMs are significantly correlated with pulmonary metastasis and poor survival in osteosarcoma patients.

  • CCL18 may be used as a prognostic marker and therapeutic target for osteosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

OS :

osteosarcoma

CCL18 :

chemokine ligand 18

TAM :

tumor-associated macrophage

TME :

tumor microenvironment

UCA1 :

long non-coding RNA urothelial carcinoma associated 1

BME :

bone microenvironment

References

  1. Moore DD, Luu HH (2014) Osteosarcoma. Cancer Treat Res 162:65–92

    Article  PubMed  Google Scholar 

  2. Friebele JC, Peck J, Pan X, Abdel-Rasoul M, Mayerson JL (2015) Osteosarcoma: a meta-analysis and review of the literature. Am J Orthop (Belle Mead NJ) 44(12):547–553

    Google Scholar 

  3. Mialou V, Philip T, Kalifa C, Perol D, Gentet JC, Marec-Berard P, Pacquement H, Chastagner P, Defaschelles AS, Hartmann O (2005) Metastatic osteosarcoma at diagnosis: prognostic factors and long-term outcome—the French pediatric experience. Cancer 104(5):1100–1109

    Article  PubMed  Google Scholar 

  4. Bielack SS, Kempf-Bielack B, Delling G, Exner GU, Flege S, Helmke K, Kotz R, Salzer-Kuntschik M, Werner M, Winkelmann W, Zoubek A, Jurgens H, Winkler K (2002) Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol Off J Am Soc Clin Oncol 20(3):776–790

    Article  Google Scholar 

  5. Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125(Pt 23):5591–5596

    Article  CAS  PubMed  Google Scholar 

  6. Hui L, Chen Y (2015) Tumor microenvironment: sanctuary of the devil. Cancer Lett 368(1):7–13

    Article  CAS  PubMed  Google Scholar 

  7. Chanmee T, Ontong P, Konno K, Itano N (2014) Tumor-associated macrophages as major players in the tumor microenvironment. Cancers 6(3):1670–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, Yang SM (2012) Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012:948098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qian B, Deng Y, Im JH, Muschel RJ, Zou Y, Li J, Lang RA, Pollard JW (2009) A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One 4(8):e6562. https://doi.org/10.1371/journal.pone.0006562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jia X, Yu F, Wang J, Iwanowycz S, Saaoud F, Wang Y, Hu J, Wang Q, Fan D (2014) Emodin suppresses pulmonary metastasis of breast cancer accompanied with decreased macrophage recruitment and M2 polarization in the lungs. Breast Cancer Res Treat 148(2):291–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Comito G, Giannoni E, Segura CP, Barcellos-de-Souza P, Raspollini MR, Baroni G, Lanciotti M, Serni S, Chiarugi P (2014) Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene 33(19):2423–2431

    Article  CAS  PubMed  Google Scholar 

  13. Yin S, Huang J, Li Z, Zhang J, Luo J, Lu C, Xu H, Xu H (2017) The prognostic and clinicopathological significance of tumor-associated macrophages in patients with gastric cancer: a meta-analysis. PLoS One 12(1):e0170042. https://doi.org/10.1371/journal.pone.0170042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou Q, Xian M, Xiang S, Xiang D, Shao X, Wang J, Cao J, Yang X, Yang B, Ying M, He Q (2017) All-trans retinoic acid prevents osteosarcoma metastasis by inhibiting M2 polarization of tumor-associated macrophages. Cancer Immunol Res 5(7):547–559

    Article  CAS  PubMed  Google Scholar 

  15. Davis LE, Jeng S, Svalina MN, Huang E, Pittsenbarger J, Cantor EL, Berlow N, Seguin B, Mansoor A, McWeeney SK, Keller C (2017) Integration of genomic, transcriptomic and functional profiles of aggressive osteosarcomas across multiple species. Oncotarget 8(44):76241–76256

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen J, Yao Y, Gong C, Yu F, Su S, Chen J, Liu B, Deng H, Wang F, Lin L, Yao H, Su F, Anderson KS, Liu Q, Ewen ME, Yao X, Song E (2011) CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 19(4):541–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin Z, Li W, Zhang H, Wu W, Peng Y, Zeng Y, Wan Y, Wang J, Ouyang N (2016) CCL18/PITPNM3 enhances migration, invasion, and EMT through the NF-kappaB signaling pathway in hepatocellular carcinoma. Tumour Biol 37(3):3461–3468

    Article  CAS  PubMed  Google Scholar 

  18. Lane D, Matte I, Laplante C, Garde-Granger P, Carignan A, Bessette P, Rancourt C, Piche A (2016) CCL18 from ascites promotes ovarian cancer cell migration through proline-rich tyrosine kinase 2 signaling. 15(1):58

  19. Alfranca A, Martinez-Cruzado L, Tornin J, Abarrategi A, Amaral T, de Alava E, Menendez P, Garcia-Castro J, Rodriguez R (2015) Bone microenvironment signals in osteosarcoma development. Cell Mol Life Sci: CMLS 72(16):3097–3113

    Article  CAS  PubMed  Google Scholar 

  20. Itoh H, Kadomatsu T, Tanoue H, Yugami M, Miyata K, Endo M, Morinaga J, Kobayashi E, Miyamoto T, Kurahashi R, Terada K, Mizuta H, Oike Y (2018) TET2-dependent IL-6 induction mediated by the tumor microenvironment promotes tumor metastasis in osteosarcoma. Oncogene 37(22):2903–2920

    Article  CAS  PubMed  Google Scholar 

  21. Gomez-Brouchet A, Illac C, Gilhodes J, Bouvier C, Aubert S, Guinebretiere JM, Marie B, Larousserie F, Entz-Werle N, de Pinieux G, Filleron T, Minard V, Minville V, Mascard E, Gouin F, Jimenez M, Ledeley MC, Piperno-Neumann S, Brugieres L, Redini F (2017) CD163-positive tumor-associated macrophages and CD8-positive cytotoxic lymphocytes are powerful diagnostic markers for the therapeutic stratification of osteosarcoma patients: an immunohistochemical analysis of the biopsies from the French OS2006 phase 3 trial. Oncoimmunology 6(9):e1331193

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dumars C, Ngyuen JM, Gaultier A, Lanel R, Corradini N, Gouin F, Heymann D, Heymann MF (2016) Dysregulation of macrophage polarization is associated with the metastatic process in osteosarcoma. Oncotarget 7(48):78343–78354

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen G, Liang YX, Zhu JG, Fu X, Chen YF, Mo RJ, Zhou L, Fu H, Bi XC, He HC, Yang SB, Wu YD, Jiang FN, Zhong WD (2014) CC chemokine ligand 18 correlates with malignant progression of prostate cancer. Biomed Res Int 2014:230183–230110

    PubMed  PubMed Central  Google Scholar 

  24. Shi L, Zhang B, Sun X, Zhang X, Lv S, Li H, Wang X, Zhao C, Zhang H, Xie X, Wang Y, Zhang P (2016) CC chemokine ligand 18(CCL18) promotes migration and invasion of lung cancer cells by binding to Nir1 through Nir1-ELMO1/DOC180 signaling pathway. Mol Carcinog 55(12):2051–2062

    Article  CAS  PubMed  Google Scholar 

  25. Sakane R, Tsubamoto H, Sakata K, Inoue K, Ogino M, Shibahara H, Hao H, Hirota S (2014) Expression of chemokine ligand 18 in stage IA low-grade endometrial cancer. Anticancer Res 34(10):5331–5336

    PubMed  Google Scholar 

  26. Xu Y, Zhang L, Sun SK, Zhang X (2014) CC chemokine ligand 18 and IGF-binding protein 6 as potential serum biomarkers for prostate cancer. Tohoku J Exp Med 233(1):25–31

    Article  CAS  PubMed  Google Scholar 

  27. Hoffman RM (2015) Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat Rev Cancer 15(8):451–452

    Article  CAS  PubMed  Google Scholar 

  28. Hoffman RM (2017) Patient-derived mouse models of cancer. Patient-derived orthotopic xenografts (PDOX). Anticancer Res

  29. Wagner F, Holzapfel BM, Thibaudeau L, Straub M, Ling MT, Grifka J, Loessner D, Levesque JP, Hutmacher DW (2016) A validated preclinical animal model for primary bone tumor research. J Bone Joint Surg Am 98(11):916–925

    Article  PubMed  Google Scholar 

  30. Han P, Chang CP (2015) Long non-coding RNA and chromatin remodeling. RNA Biol 12(10):1094–1098

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ni B, Yu X, Guo X, Fan X, Yang Z, Wu P, Yuan Z, Deng Y, Wang J, Chen D, Wang L (2015) Increased urothelial cancer associated 1 is associated with tumor proliferation and metastasis and predicts poor prognosis in colorectal cancer. Int J Oncol 47(4):1329–1338

    Article  CAS  PubMed  Google Scholar 

  32. Tian Y, Zhang X, Hao Y, Fang Z, He Y (2014) Potential roles of abnormally expressed long noncoding RNA UCA1 and Malat-1 in metastasis of melanoma. Melanoma Res 24(4):335–341

    Article  CAS  PubMed  Google Scholar 

  33. Wang F, Ying HQ, He BS, Pan YQ, Deng QW, Sun HL, Chen J, Liu X, Wang SK (2015) Upregulated lncRNA-UCA1 contributes to progression of hepatocellular carcinoma through inhibition of miR-216b and activation of FGFR1/ERK signaling pathway. Oncotarget 6(10):7899–7917

    PubMed  PubMed Central  Google Scholar 

  34. Xue M, Chen W, Li X (2016) Urothelial cancer associated 1: a long noncoding RNA with a crucial role in cancer. J Cancer Res Clin Oncol 142(7):1407–1419

    Article  PubMed  Google Scholar 

  35. Li W, Xie P, Ruan WH (2016) Overexpression of lncRNA UCA1 promotes osteosarcoma progression and correlates with poor prognosis. J Bone Oncol 5(2):80–85

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wen JJ, Ma YD, Yang GS, Wang GM (2017) Analysis of circulating long non-coding RNA UCA1 as potential biomarkers for diagnosis and prognosis of osteosarcoma. Eur Rev Med Pharmacol Sci 21(3):498–503

    PubMed  Google Scholar 

  37. Li T, Xiao Y, Huang T (2018) HIF-1α-induced upregulation of lncRNA UCA1 promotes cell growth in osteosarcoma by inactivating the PTEN/AKT signaling pathway. Oncol Rep 39(3):1072–1080

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu G, Liu X, Su Y, Kong F, Hong X, Lin Z (2018) Knockdown of urothelial carcinoma associated 1 suppressed cell growth and migration through regulating miR-301a and CXCR4 in osteosarcoma MHCC97 cells. Oncol Res. https://doi.org/10.3727/096504018x15201143705855

  39. Yang YT, Wang YF, Lai JY, Shen SY, Wang F, Kong J, Zhang W, Yang HY (2016) Long non-coding RNA UCA1 contributes to the progression of oral squamous cell carcinoma by regulating the WNT/beta-catenin signaling pathway. Cancer Sci 107(11):1581–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu H, Wang G, Yang L, Qu J, Yang Z, Zhou X (2016) Knockdown of long non-coding RNA UCA1 increases the tamoxifen sensitivity of breast cancer cells through inhibition of Wnt/beta-catenin pathway. PLoS One 11(12):e0168406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr. Binzhi Qian (Edinburgh EH16 4TJ, UK) for his crucial assistance and experimental guidance.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 81503396 and 81372873).

Author information

Authors and Affiliations

Authors

Contributions

Y.S, Y.Z., and Y. S. performed the experiments and wrote the paper. Y. W., J. Y., Y. H., and J. Z. analyzed the data. A. H., K. H., and H. Z. carried out the sample collection and preparation. Y. Y. participated in the literature search and manuscript revision. H. H. and X. L. conceived and designed the research.

Corresponding authors

Correspondence to Xiao-Bin Lv or Hai-yan Hu.

Ethics declarations

The study was carried out in accordance with the World Medical Association Declaration of Helsinki and obtained approval from the local ethics committee of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital. Written informed consent was obtained from all patients. The animal experimental operations were approved by the Animal Care and Use Committee of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital.

Electronic supplementary material

ESM 1

(DOCX 17 kb)

Supplemental Fig. 1

(PNG 429 kb)

High-resolution image

(TIF 92 kb)

Supplemental Fig. 2

(PNG 413 kb)

High-resolution image

(TIF 1989 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Zhou, Y., Sun, Yj. et al. Macrophage-derived CCL18 promotes osteosarcoma proliferation and migration by upregulating the expression of UCA1. J Mol Med 97, 49–61 (2019). https://doi.org/10.1007/s00109-018-1711-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-018-1711-0

Keywords

Navigation