Advertisement

Journal of Molecular Medicine

, Volume 96, Issue 11, pp 1177–1187 | Cite as

Stimulation of angiogenesis using single-pulse low-pressure shock wave treatment

  • Susinder Sundaram
  • Karthi Sellamuthu
  • Krishnaveni Nagavelu
  • Harikumar R Suma
  • Arpan Das
  • Raghu Narayan
  • Dipshikha Chakravortty
  • Jagadeesh GopalanEmail author
  • Sandeep M EswarappaEmail author
Original Article
  • 256 Downloads

Abstract

Endothelial cells respond to mechanical stimuli such as stretch. This property can be exploited with caution to induce angiogenesis which will have immense potential to treat pathological conditions associated with insufficient angiogenesis. The primary aim of this study is to test if low-pressure shock waves can be used to induce angiogenesis. Using a simple diaphragm-based shock tube, we demonstrate that a single pulse of low pressure (0.4 bar) shock wave is enough to induce proliferation in bovine aortic endothelial cells and human pulmonary microvascular endothelial cells. We show that this is associated with enhanced Ca++ influx and phosphorylation of phosphatidylinositol-3-kinase (PI3K) which is normally observed when endothelial cells are exposed to stretch. We also demonstrate the pro-angiogenic effect of shock waves of single pulse (per dose) using murine back punch wound model. Shock wave treated mice showed enhanced wound-induced angiogenesis as reflected by increased vascular area and vessel length. They also showed accelerated wound closure compared to control mice. Overall, our study shows that just a single pulse/shot (per dose) of shock waves can be used to induce angiogenesis. Importantly, we demonstrate this effect using a pulse of low-pressure shock waves (0.4 bar, in vitro and 0.15 bar, in vivo).

Key messages

  • Low-pressure single-pulse shock waves can induce endothelial cell migration and proliferation.

  • This effect is endothelial cell specific.

  • These shock waves enhance wound-induced angiogenesis in vivo.

  • These shock waves can also accelerate wound healing in vivo.

Keywords

Angiogenesis Endothelial cells Wound healing Shock waves 

Notes

Acknowledgements

We thank Profs. K N Balaji and Deepak K Saini for sharing reagents.

Funding information

This work was supported by Start-up Grant (to SME) from Director of the Indian Institute of Science (Part (2A) XII Plan (506/BC)), Department of Biotechnology (DBT)—Indian Institute of Science (IISc) Partnership Program for Advanced Research in Biological Sciences and funds from UGC, India. SME is a recipient of Wellcome Trust—DBT India Alliance Intermediate Fellowship (IA/I/15/1/501833) and Start-up Grant for Young Scientists from Department of Science and Technology (DST)—Science and Engineering Research Board (SERB), India (YSS/2015/000989). KS is a recipient of National Postdoctoral Fellowship from DST-SERB, India (PDF/2016/003526).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

109_2018_1690_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 14 kb)

References

  1. 1.
    Birukov KG (2009) Cyclic stretch, reactive oxygen species, and vascular remodeling. Antioxid Redox Signal 11:1651–1667CrossRefGoogle Scholar
  2. 2.
    Lacolley P (2004) Mechanical influence of cyclic stretch on vascular endothelial cells. Cardiovasc Res 63:577–579CrossRefGoogle Scholar
  3. 3.
    Li W, Sumpio BE (2005) Strain-induced vascular endothelial cell proliferation requires PI3K-dependent mTOR-4E-BP1 signal pathway. Am J Physiol Heart Circ Physiol 288:H1591–H1597CrossRefGoogle Scholar
  4. 4.
    Jufri NF, Mohamedali A, Avolio A, Baker MS (2015) Mechanical stretch: physiological and pathological implications for human vascular endothelial cells. Vas Cell 7:8CrossRefGoogle Scholar
  5. 5.
    Anwar MA, Shalhoub J, Lim CS, Gohel MS, Davies AH (2012) The effect of pressure-induced mechanical stretch on vascular wall differential gene expression. J Vasc Res 49:463–478CrossRefGoogle Scholar
  6. 6.
    Naruse K, Yamada T, Sokabe M (1998) Involvement of SA channels in orienting response of cultured endothelial cells to cyclic stretch. Am J Physiol 274:H1532–H1538PubMedGoogle Scholar
  7. 7.
    Katsumi A, Naoe T, Matsushita T, Kaibuchi K, Schwartz MA (2005) Integrin activation and matrix binding mediate cellular responses to mechanical stretch. J Biol Chem 280:16546–16549CrossRefGoogle Scholar
  8. 8.
    Osawa M, Masuda M, Kusano K, Fujiwara K (2002) Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule? J Cell Biol 158:773–785CrossRefGoogle Scholar
  9. 9.
    Thodeti CK, Matthews B, Ravi A, Mammoto A, Ghosh K, Bracha AL, Ingber DE (2009) TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res 104:1123–1130CrossRefGoogle Scholar
  10. 10.
    Ikeda M, Kito H, Sumpio BE (1999) Phosphatidylinositol-3 kinase dependent MAP kinase activation via p21ras in endothelial cells exposed to cyclic strain. Biochem Biophys Res Commun 257:668–671CrossRefGoogle Scholar
  11. 11.
    IAB Z′d, Raĭzer IUP (2002) Physics of shock waves and high-temperature hydrodynamic phenomena. Dover Publications, MineolaGoogle Scholar
  12. 12.
    Courant R, Friedrichs KO (1999) Supersonic flow and shock waves, Corr. 5th print. edn. Springer, New YorkGoogle Scholar
  13. 13.
    Loske AM (2017) Medical and biomedical applications of shock waves. Shock Wave and High Pressure Phenomena.  https://doi.org/10.1007/978-3-319-47570-7 CrossRefGoogle Scholar
  14. 14.
    Jagadeesh G, Prakash GD, Rakesh SG, Allam US, Krishna MG, Eswarappa SM, Chakravortty D (2011) Needleless vaccine delivery using micro-shock waves. Clin Vaccine Immunol 18:539–545CrossRefGoogle Scholar
  15. 15.
    Gnanadhas DP, Elango M, Janardhanraj S, Srinandan CS, Datey A, Strugnell RA, Gopalan J, Chakravortty D (2015) Successful treatment of biofilm infections using shock waves combined with antibiotic therapy. Sci Rep 5:17440CrossRefGoogle Scholar
  16. 16.
    Datey A, Subburaj J, Gopalan J, Chakravortty D (2017) Mechanism of transformation in Mycobacteria using a novel shockwave assisted technique driven by in-situ generated oxyhydrogen. Sci Rep 7:8645CrossRefGoogle Scholar
  17. 17.
    Notarnicola A, Moretti B (2012) The biological effects of extracorporeal shock wave therapy (ESWT) on tendon tissue. Muscles Ligaments Tendons J 2:33–37PubMedPubMedCentralGoogle Scholar
  18. 18.
    Goertz O, Lauer H, Hirsch T, Ring A, Lehnhardt M, Langer S, Steinau HU, Hauser J (2012) Extracorporeal shock waves improve angiogenesis after full thickness burn. Burns 38:1010–1018CrossRefGoogle Scholar
  19. 19.
    Tepekoylu C, Wang FS, Kozaryn R, Albrecht-Schgoer K, Theurl M, Schaden W, Ke HJ, Yang Y, Kirchmair R, Grimm M et al (2013) Shock wave treatment induces angiogenesis and mobilizes endogenous CD31/CD34-positive endothelial cells in a hindlimb ischemia model: implications for angiogenesis and vasculogenesis. J Thorac Cardiovasc Surg 146:971–978CrossRefGoogle Scholar
  20. 20.
    Nishida T, Shimokawa H, Oi K, Tatewaki H, Uwatoku T, Abe K, Matsumoto Y, Kajihara N, Eto M, Matsuda T, Yasui H, Takeshita A, Sunagawa K (2004) Extracorporeal cardiac shock wave therapy markedly ameliorates ischemia-induced myocardial dysfunction in pigs in vivo. Circulation 110:3055–3061CrossRefGoogle Scholar
  21. 21.
    Pereira S, Veeraraghavan P, Ghosh S, Gandhi M (2004) Animal experimentation and ethics in India: the CPCSEA makes a difference. Altern Lab Anim 32(Suppl 1B):411–415PubMedGoogle Scholar
  22. 22.
    Hariharan MS, Janardhanraj S, Saravanan S, Jagadeesh G (2011) Diaphragmless shock wave generators for industrial applications of shock waves. Shock Waves 21:301–306CrossRefGoogle Scholar
  23. 23.
    Zudaire E, Gambardella L, Kurcz C, Vermeren S (2011) A computational tool for quantitative analysis of vascular networks. PLoS One 6:e27385.  https://doi.org/10.1371/journal.pone.0027385 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Reddy KPJ, Nagaraju S (2013) Manually operated piston-driven shock tube. Curr Sci 104:172–176Google Scholar
  25. 25.
    Karar J, Maity A (2011) PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci 4:51CrossRefGoogle Scholar
  26. 26.
    Krump-Konvalinkova V, Bittinger F, Unger RE, Peters K, Lehr HA, Kirkpatrick CJ (2001) Generation of human pulmonary microvascular endothelial cell lines. Lab Investig 81:1717–1727CrossRefGoogle Scholar
  27. 27.
    Simons M, Alitalo K, Annex BH, Augustin HG, Beam C, Berk BC, Byzova T, Carmeliet P, Chilian W, Cooke JP, Davis GE, Eichmann A, Iruela-Arispe ML, Keshet E, Sinusas AJ, Ruhrberg C, Woo YJ, Dimmeler S, on behalf of the American Heart Association Council on Basic Cardiovascular Sciences and Council on Cardiovascular Surgery and Anesthesia (2015) State-of-the-art methods for evaluation of angiogenesis and tissue vascularization: a scientific statement from the American Heart Association. Circ Res 116:e99–e132CrossRefGoogle Scholar
  28. 28.
    Chaussy C, Brendel W, Schmiedt E (1980) Extracorporeally induced destruction of kidney stones by shock waves. Lancet 2:1265–1268CrossRefGoogle Scholar
  29. 29.
    Eroglu M, Cimentepe E, Demirag F, Unsal E, Unsal A (2007) The effects of shock waves on lung tissue in acute period: an in vivo study. Urol Res 35:155–160CrossRefGoogle Scholar
  30. 30.
    Delius M, Enders G, Heine G, Stark J, Remberger K, Brendel W (1987) Biological effects of shock waves: lung hemorrhage by shock waves in dogs—pressure dependence. Ultrasound Med Biol 13:61–67CrossRefGoogle Scholar
  31. 31.
    Weber C, Moran ME, Braun EJ, Drach GW (1992) Injury of rat renal vessels following extracorporeal shock wave treatment. J Urol 147:476–481CrossRefGoogle Scholar
  32. 32.
    Ilnyckyj A, Hosking DH, Pettigrew NM, Bernstein CN (1999) Extracorporeal shock wave lithotripsy causing colonic injury. Dig Dis Sci 44:2485–2487CrossRefGoogle Scholar
  33. 33.
    Hung SY, Chen HM, Jan YY, Chen MF (2000) Common bile duct and pancreatic injury after extracorporeal shock wave lithotripsy for renal stone. Hepatogastroenterology 47:1162–1163PubMedGoogle Scholar
  34. 34.
    Geh JL, Curley P, Mayfield MP, Price JJ (1997) Small bowel perforation after extracorporeal shock wave lithotripsy. Br J Urol 79:648–649CrossRefGoogle Scholar
  35. 35.
    Gugulakis AG, Matsagas MI, Liapis CD, Vasdekis SN, Sechas MN (1998) Rupture of the abdominal aorta following extracorporeal shock-wave lithotripsy. Eur J Surg 164:233–235CrossRefGoogle Scholar
  36. 36.
    Zins SR, Amare MF, Tadaki DK, Elster EA, Davis TA (2010) Comparative analysis of angiogenic gene expression in normal and impaired wound healing in diabetic mice: effects of extracorporeal shock wave therapy. Angiogenesis 13:293–304CrossRefGoogle Scholar
  37. 37.
    Hatanaka K, Ito K, Shindo T, Kagaya Y, Ogata T, Eguchi K, Kurosawa R, Shimokawa H (2016) Molecular mechanisms of the angiogenic effects of low-energy shock wave therapy: roles of mechanotransduction. Am J Physiol Cell Physiol 311:C378–C385CrossRefGoogle Scholar
  38. 38.
    Holfeld J, Tepekoylu C, Blunder S, Lobenwein D, Kirchmair E, Dietl M, Kozaryn R, Lener D, Theurl M, Paulus P et al (2014) Low energy shock wave therapy induces angiogenesis in acute hind-limb ischemia via VEGF receptor 2 phosphorylation. PLoS One 9:e103982CrossRefGoogle Scholar
  39. 39.
    Berta L, Fazzari A, Ficco AM, Enrica PM, Catalano MG, Frairia R (2009) Extracorporeal shock waves enhance normal fibroblast proliferation in vitro and activate mRNA expression for TGF-beta1 and for collagen types I and III. Acta Orthop 80:612–617CrossRefGoogle Scholar
  40. 40.
    Cheng JH, Wang CJ (2015) Biological mechanism of shockwave in bone. Int J Surg 24:143–146CrossRefGoogle Scholar
  41. 41.
    Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT (2017) The PI3K pathway in human disease. Cell 170:605–635CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiochemistryIndian Institute of ScienceBengaluruIndia
  2. 2.Central Animal FacilityIndian Institute of ScienceBengaluruIndia
  3. 3.Department of Aerospace EngineeringIndian Institute of ScienceBengaluruIndia
  4. 4.Department of Microbiology and Cell BiologyIndian Institute of ScienceBengaluruIndia

Personalised recommendations