Skip to main content

Advertisement

Log in

Dual immuno-renal targeting of 7-benzylidenenaltrexone alleviates lupus nephritis via FcγRIIB and HO-1

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Known as a selective δ1 opioid receptor (DOR1) antagonist, the 7-benzylidenenaltrexone (BNTX) is also a DOR1-independent immunosuppressant with unknown mechanisms. Here we investigated if BNTX could be beneficial for diseased MRL/lpr lupus mice. We treated mice with 0.5, 2, 5 or 10 mg/kg/day of BNTX for 2 weeks. At as low as 2 mg/kg/day, BNTX significantly improved splenomegaly and lymphadenopathy. Notably, B cell numbers, particularly autoreactive plasma cells, were preferentially reduced; moreover, BNTX enhanced surface expression of FcγRIIB, an immune complex (IC)-dependent apoptotic trigger of B cells. Consequently, serum autoantibody concentrations were significantly decreased, leading to diminished glomerular IC deposition and renal fibrosis, thereby improving proteinuria. Microarray and pathway analyses revealed heme oxygenase-1 (HO-1) and p38 MAPK as key mediators of BNTX-induced upregulation of FcγRIIB. Moreover, HO-1 expression was also induced by BNTX via p38 MAPK at renal proximal tubules to further cytoprotection. Taken together, we demonstrate that BNTX can alleviate lupus nephritis by reducing autoreactive B cells via FcγRIIB and by augmenting renal protection via HO-1. Accordingly, we propose a new strategy to treat lupus nephritis via such a dual immuno-renal targeting using either a single agent or combined agents to simultaneously deplete B cells and enhance renal protection.

Key messages

  • 7-Benzylidenenaltrexone (BNTX) alleviates lupus nephritis in diseased MRL/lpr mice.

  • BNTX reduces autoreactive plasma cell numbers and serum autoantibody titers.

  • BNTX upregulates FcγRIIB levels via p38 MAPK and HO-1 to reduce B cell numbers.

  • Reduction of immune complex deposition and fibrosis by BNTX improves proteinuria.

  • BNTX induces HO-1 via p38 MAPK to enhance protection of renal proximal tubules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Al-Hashimi M, Scott SW, Thompson JP, Lambert DG (2013) Opioids and immune modulation: more questions than answers. Br J Anaesth 111:80–88

    Article  CAS  PubMed  Google Scholar 

  2. Bidlack JM, Khimich M, Parkhill AL, Sumagin S, Sun B, Tipton CM (2006) Opioid receptors and signaling on cells from the immune system. J NeuroImmune Pharmacol 1:260–269

    Article  PubMed  Google Scholar 

  3. Zaki PA, Bilsky EJ, Vanderah TW, Lai J, Evans CJ, Porreca F (1996) Opioid receptor types and subtypes: the delta receptor as a model. Annu Rev Pharmacol Toxicol 36:379–401

    Article  CAS  PubMed  Google Scholar 

  4. House RV, Thomas PT, Bhargava HN (1996) A comparative study of immunomodulation produced by in vitro exposure to delta opioid receptor agonist peptides. Peptides 17:75–81

    Article  CAS  PubMed  Google Scholar 

  5. House RV, Thomas PT, Kozak JT, Bhargava HN (1995) Suppression of immune function by non-peptidic delta opioid receptor antagonists. Neurosci Lett 198:119–122

    Article  CAS  PubMed  Google Scholar 

  6. Traynor JR, Elliott J (1993) Delta-opioid receptor subtypes and cross-talk with mu-receptors. Trends Pharmacol Sci 14:84–86

    Article  CAS  PubMed  Google Scholar 

  7. Portoghese PS, Sultana M, Nagase H, Takemori AE (1992) A highly selective delta 1-opioid receptor antagonist: 7-benzylidenenaltrexone. Eur J Pharmacol 218:195–196

    Article  CAS  PubMed  Google Scholar 

  8. Gavériaux-Ruff C, Filliol D, Simonin F, Matthes HW, Kieffer BL (2001) Immunosuppression by delta-opioid antagonist naltrindole: delta- and triple mu/delta/kappa-opioid receptor knockout mice reveal a nonopioid activity. J Pharmacol Exp Ther 298:1193–1198

    PubMed  Google Scholar 

  9. Takahashi S, Fossati L, Iwamoto M, Merino R, Motta R, Kobayakawa T, Izui S (1996) Imbalance towards Th1 predominance is associated with acceleration of lupus-like autoimmune syndrome in MRL mice. J Clin Invest 97:1597–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bagavant H, Fu SM (2009) Pathogenesis of kidney disease in systemic lupus erythematosus. Curr Opin Rheumatol 21:489–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tzeng SJ (2016) The isolation, differentiation, and quantification of human antibody-secreting B cells from blood: ELISpot as a functional readout of humoral immunity. J Vis Exp (118). https://doi.org/10.3791/54582

  12. Shinnakasu R, Kurosaki T (2017) Regulation of memory B and plasma cell differentiation. Curr Opin Immunol 45:126–131

    Article  CAS  PubMed  Google Scholar 

  13. Fukuyama H, Nimmerjahn F, Ravetch JV (2005) The inhibitory Fcγ receptor modulates autoimmunity by limiting the accumulation of immunoglobulin G+ anti-DNA plasma cells. Nat Immunol 6:99–106

    Article  CAS  PubMed  Google Scholar 

  14. Xiang Z, Cutler AJ, Brownlie RJ, Fairfax K, Lawlor KE, Severinson E, Walker EU, Manz RA, Tarlinton DM, Smith KG (2007) FcγRIIb controls bone marrow plasma cell persistence and apoptosis. Nat Immunol 8:419–429

    Article  CAS  PubMed  Google Scholar 

  15. McGaha TL, Karlsson MC, Ravetch JV (2008) FcγRIIB deficiency leads to autoimmunity and a defective response to apoptosis in Mrl-MpJ mice. J Immunol 180:5670–5679

    Article  CAS  PubMed  Google Scholar 

  16. Tzeng SJ, Li WY, Wang HY (2015) FcγRIIB mediates antigen-independent inhibition on human B lymphocytes through Btk and p38 MAPK. J Biomed Sci 22:87–98

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kie JH, Kapturczak MH, Traylor A, Agarwal A, Hill-Kapturczak N (2008) Heme oxygenase-1 deficiency promotes epithelial-mesenchymal transition and renal fibrosis. J Am Soc Nephrol 19:1681–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Morimoto K, Ohta K, Yachie A, Yang Y, Shimizu M, Goto C, Toma T, Kasahara Y, Yokoyama H, Miyata T, Seki H, Koizumi S (2001) Cytoprotective role of heme oxygenase (HO)-1 in human kidney with various renal diseases. Kidney Int 60:1858–1866

    Article  CAS  PubMed  Google Scholar 

  19. Almaani S, Meara A, Rovin BH (2017) Update on lupus nephritis. Clin J Am Soc Nephrol 12:825–835

    Article  PubMed  Google Scholar 

  20. Tsokos GC (2011) Systemic lupus erythematosus. N Engl J Med 365:2110–2121

    Article  CAS  PubMed  Google Scholar 

  21. Williams JP, Thompson JP, McDonald J, Barnes TA, Cote T, Rowbotham DJ, Lambert DG (2007) Human peripheral blood mononuclear cells express nociceptin/orphanin FQ, but not mu, delta, or kappa opioid receptors. Anesth Analg 105:998–1005

    Article  CAS  PubMed  Google Scholar 

  22. Al-Hashimi M, McDonald J, Thompson JP, Lambert DG (2016) Evidence for nociceptin/orphanin FQ (NOP) but not μ (MOP), δ (DOP) or κ (KOP) opioid receptor mRNA in whole human blood. Br J Anaesth 116:423–429

    Article  CAS  PubMed  Google Scholar 

  23. Hiepe F, Dörner T, Hauser AE, Hoyer BF, Mei H, Radbruch A (2011) Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat Rev Rheumatol 7:170–178

    Article  CAS  PubMed  Google Scholar 

  24. Mumtaz IM, Hoyer BF, Panne D, Moser K, Winter O, Cheng QY, Yoshida T, Burmester GR, Radbruch A, Manz RA, Hiepe F (2012) Bone marrow of NZB/W mice is the major site for plasma cells resistant to dexamethasone and cyclophosphamide: implications for the treatment of autoimmunity. J Autoimmun 39:180–188

    Article  CAS  PubMed  Google Scholar 

  25. Hiepe F, Radbruch A (2016) Plasma cells as an innovative target in autoimmune disease with renal manifestations. Nat Rev Nephrol 12:232–240

    Article  CAS  PubMed  Google Scholar 

  26. Mahévas M, Michel M, Weill JC, Reynaud CA (2013) Long-lived plasma cells in autoimmunity: lessons from B-cell depleting therapy. Front Immunol 4:494–498

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chan O, Shlomchik MJ (1998) A new role for B cells in systemic autoimmunity: B cells promote spontaneous T cell activation in MRL-lpr/lpr mice. J Immunol 160:51–59

    CAS  PubMed  Google Scholar 

  28. Chan OT, Madaio MP, Shlomchik MJ (1999) B cells are required for lupus nephritis in the polygenic, Fas-intact MRL model of systemic autoimmunity. J Immunol 163:3592–3596

    CAS  PubMed  Google Scholar 

  29. Tzeng SJ, Bolland S, Inabe K, Kurosaki T, Pierce SK (2005) The B cell inhibitory Fc receptor triggers apoptosis by a novel c-Abl family kinase-dependent pathway. J Biol Chem 280:35247–35254

    Article  CAS  PubMed  Google Scholar 

  30. Kitamura M, Fine LG (1999) The concept of glomerular self-defense. Kidney Int 55:1639–1671

    Article  CAS  PubMed  Google Scholar 

  31. Jarmi T, Agarwal A (2009) Heme oxygenase and renal disease. Curr Hypertens Rep 11:56–62

    Article  CAS  PubMed  Google Scholar 

  32. Ohta K, Yachie A, Fujimoto K, Kaneda H, Wada T, Toma T, Seno A, Kasahara Y, Yokoyama H, Seki H, Koizumi S (2000) Tubular injury as a cardinal pathologic feature in human heme oxygenase-1 deficiency. Am J Kidney Dis 35:863–870

    Article  CAS  PubMed  Google Scholar 

  33. Chen X, Wei SY, Li JS, Zhang QF, Wang YX, Zhao SL, Yu J, Wang C, Qin Y, Wei QJ, Lv GX, Li B (2016) Overexpression of heme oxygenase-1 prevents renal interstitial inflammation and fibrosis induced by unilateral ureter obstruction. PLoS One 11:e0147084

    Article  PubMed  PubMed Central  Google Scholar 

  34. Takeda Y, Takeno M, Iwasaki M, Kobayashi H, Kirino Y, Ueda A, Nagahama K, Aoki I, Ishigatsubo Y (2004) Chemical induction of HO-1 suppresses lupus nephritis by reducing local iNOS expression and synthesis of anti-dsDNA antibody. Clin Exp Immunol 138:237–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Elmarakby AA, Faulkner J, Baban B, Saleh MA, Sullivan JC (2012) Induction of hemeoxygenase-1 reduces glomerular injury and apoptosis in diabetic spontaneously hypertensive rats. Am J Physiol Renal Physiol 302:F791–F800

    Article  PubMed  Google Scholar 

  36. Kamei J, Iwamoto Y, Suzuki T, Misawa M, Nagase H, Kasuya Y (1994) Involvement of delta 1-opioid receptor antagonism in the antitussive effect of δ-opioid receptor antagonists. Eur J Pharmacol 251:291–294

    Article  CAS  PubMed  Google Scholar 

  37. Abdallah K, Gendron L (2017, 2017 May 17) The delta opioid receptor in pain control. Handb Exp Pharmacol. https://doi.org/10.1007/164_2017_32

  38. Gavériaux-Ruff C, Kieffer BL (2001) Delta opioid receptor analgesia: recent contributions from pharmacology and molecular approaches. Behav Pharmacol 22:405–414

    Article  Google Scholar 

  39. Peppin JF, Raffa RB (2015) Delta opioid agonists: a concise update on potential therapeutic applications. J Clin Pharm Ther 40:155–166

    Article  CAS  PubMed  Google Scholar 

  40. Nadal X, Baños JE, Kieffer BL, Maldonado R (2006) Neuropathic pain is enhanced in delta-opioid receptor knockout mice. Eur J Neurosci 23:830–834

    Article  PubMed  Google Scholar 

  41. Gavériaux-Ruff C, Karchewski LA, Hever X, Matifas A, Kieffer BL (2008) Inflammatory pain is enhanced in delta opioid receptor-knockout mice. Eur J Neurosci 27:2558–2567

    Article  PubMed  PubMed Central  Google Scholar 

  42. Charbogne P, Kieffer BL, Befort K (2014) 15 years of genetic approaches in vivo for addiction research: opioid receptor and peptide gene knockout in mouse models of drug abuse. Neuropharmacology 76:204–217

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants from the Ministry of Science and Technology of Taiwan (NSC99-2320-B-002-011 and MOST-105-2321-B-002-040). We thank Dr. Wan-Wan Lin for critical reading and comment on the manuscript, and Ms. Yu-Syuan You for excellent technical supports. We also would like to acknowledge the services provided by the First Core Laboratory at College of Medicine, National Taiwan University and the RCF7 Laboratory of Department of Medical Research at National Taiwan University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiang-Jong Tzeng.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic supplementary material

Supplemental Fig. 1

Serum ALT levels were not increased by BNTX treatment in MRL/lpr mice. Before and after control (vehicle, n = 6) or BNTX (2, 5, 10 mg/kg/day, n = 6) treatments, serum levels of ALT (P = 0.2361, 0.0174, 0.5061 and 0.2582) of MRL/lpr mice were examined for hepatotoxicity. Normal range of mouse serum ALT levels: 17–77 IU/L. (GIF 22 kb)

High resolution image (TIFF 1462 kb)

(PDF 445 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, TC., Huang, DY., Lai, LC. et al. Dual immuno-renal targeting of 7-benzylidenenaltrexone alleviates lupus nephritis via FcγRIIB and HO-1. J Mol Med 96, 413–425 (2018). https://doi.org/10.1007/s00109-018-1626-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-018-1626-9

Keywords

Navigation