Der Internist

, Volume 58, Issue 5, pp 441–448 | Cite as

Intestinales Mikrobiom und metabolische Erkrankungen

Von der Adipositas zu Diabetes und nichtalkoholischer Steatohepatitis
Schwerpunkt: Mikrobiom

Zusammenfassung

Hintergrund

Das intestinale Mikrobiom umfasst etwa 10 Mio. Gene, von denen viele Verdauungsenzyme codieren. Dieser Umstand erklärt tier- und humanexperimentelle Befunde, dass das intestinale Mikrobiom sich an die Nahrungsaufnahme anpasst und die Energie- und Substratgewinnung aus der Nahrung optimiert. Diese Funktion kann bei Nahrungsmangel von Vorteil sein, bei Nahrungsüberfluss kann sie Adipositas begünstigen.

Fragestellung

Die Bedeutung des intestinalen Mikrobioms in der Pathogenese der Adipositas und metabolischer Folgeerkrankungen wie Fettlebererkrankung und Diabetes mellitus Typ 2 soll anhand aktueller Literaturdaten dargestellt werden. Mögliche klinische Konsequenzen werden diskutiert.

Material und Methoden

Aktuelle Literatur zum Thema wurde ausgewählt, präsentiert und im Zusammenhang der Fragestellung diskutiert.

Ergebnisse

Das intestinale Mikrobiom spielt eine Rolle in der Pathogenese der Adipositas (durch Steigerung der Energieaufnahme) wie auch in der Pathogenese der Fettlebererkrankung und des Diabetes mellitus Typ 2 (durch Induktion einer subklinischen Entzündung nach Translokation von Lipopolysacchariden aus dem Darm und durch metabolische Dysregulation).

Schlussfolgerung

Diese Ergebnisse könnten zukünftig Bedeutung in der Diagnostik und Therapie von metabolischen Erkrankungen erlangen: diagnostisch in der Identifizierung von Risikosubgruppen, therapeutisch durch den Einsatz bekannter oder neuartiger Probiotika bzw. bakterieller Metaboliten.

Schlüsselwörter

Metabolische Erkrankungen, Pathogenese Diabetes mellitus Typ 2 Subklinische Entzündung Lipopolysaccharide Westliche Ernährungsweise 

The intestinal microbiome and metabolic diseases

From obesity to diabetes and nonalcoholic steatohepatitis

Abstract

Background

The intestinal microbiome consists of about 10 million genes, many of which encode digestive enzymes. This explains why animal and human experiments revealed that the intestinal microbiome adapts to food intake and optimizes energy harvest from food. This function is considered beneficial in states of lack of food, but following overnutrition, it might support the development of obesity.

Objectives

The relevance of the intestinal microbiome for the pathogenesis of obesity and associated metabolic diseases such as fatty liver disease and type 2 diabetes mellitus and for the clinical management of such diseases shall be discussed.

Materials and methods

Recent literature related to the topic has been selected, presented, and discussed with regard to the objectives.

Results

The intestinal microbiome plays a role in the pathogenesis of both obesity (by increasing the energy absorption from food) and fatty liver disease as well as type 2 diabetes mellitus (via induction of low-grade inflammation following translocation of lipopolysaccharides from the gut and dysregulation of metabolic pathways).

Conclusions

The findings might have consequences for diagnosis (identification of risk groups) and therapy (usage of known and novel probiotics or bacterial metabolites) of metabolic diseases.

Keywords

Metabolic diseases, pathogenesis Diabetes mellitus, type 2 Inflammation, low-grade Lipopolysaccharides Diet, western 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

S.C. Bischoff gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104:979–984CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bindels LB, Dewulf EM, Delzenne NM (2013) GPR43/FFA2: physiopathological relevance and therapeutic prospects. Trends Pharmacol Sci 34:226–232CrossRefPubMedGoogle Scholar
  3. 3.
    Bischoff SC, Boirie Y, Cederholm T et al (2016) Towards a multidisciplinary approach to understand and manage obesity and related diseases. Clin Nutr. doi: 10.1016/j.clnu.2016.11.007 Google Scholar
  4. 4.
    Byrne CS, Chambers ES, Morrison DJ, Frost G (2015) The role of short chain fatty acids in appetite regulation and energy homeostasis. Int J Obes 39:1331–1338CrossRefGoogle Scholar
  5. 5.
    Cotillard A, Kennedy SP, Kong LC et al (2013) Dietary intervention impact on gut microbial gene richness. Nature 500:585–588CrossRefPubMedGoogle Scholar
  6. 6.
    Cusi K (2012) Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology 142:711–725CrossRefPubMedGoogle Scholar
  7. 7.
    David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563CrossRefPubMedGoogle Scholar
  8. 8.
    De Filippo C, Cavalieri D, Di Paola M et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    De Vadder F, Kovatcheva-Datchary P, Goncalves D et al (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96CrossRefPubMedGoogle Scholar
  10. 10.
    Ford ES (2005) Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the U.S. Diabetes Care 28:2745–2749CrossRefPubMedGoogle Scholar
  11. 11.
    Forslund K, Hildebrand F, Nielsen T et al (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528(7581):262–266CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Goodrich JK, Waters JL, Poole AC et al (2014) Human genetics shape the gut microbiome. Cell 159:789–799CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Karlsson FH, Tremaroli V, Nookaew I et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103CrossRefPubMedGoogle Scholar
  14. 14.
    Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E et al (2013) Antibiotic resistance-the need for global solutions. Lancet Infect Dis 13:1057–1098CrossRefPubMedGoogle Scholar
  15. 15.
    Louis S, Tappu RM, Damms-Machado A, Huson DH, Bischoff SC (2016) Characterization of the gut microbial community of obese patients following a weight-loss intervention using whole metagenome shotgun sequencing. PLOS ONE 11:e0149564CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lustig RH, Schmidt LA, Brindis CD (2012) Public health: The toxic truth about sugar. Nature 482:27–29CrossRefPubMedGoogle Scholar
  17. 17.
    Pedersen HK, Gudmundsdottir V, Nielsen HB et al (2016) Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535:376–381CrossRefPubMedGoogle Scholar
  18. 18.
    Qin J, Li Y, Cai Z et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60CrossRefPubMedGoogle Scholar
  19. 19.
    Ridaura VK, Faith JJ, Rey FE et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:12412–12414CrossRefGoogle Scholar
  20. 20.
    Sonnenburg ED, Smits S, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL (2016) Diet-induced extinctions in the gut microbiota compound over generations. Nature 529:212–215CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Spruss A, Kanuri G, Wagnerberger S, Haub S, Bischoff SC, Bergheim I (2009) Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 50:1094–1104CrossRefPubMedGoogle Scholar
  22. 22.
    Stefan N, Häring HU (2013) The role of hepatokines in metabolism. Nat Rev Endocrinol 9:144–152CrossRefPubMedGoogle Scholar
  23. 23.
    Sun J, Buys NJ (2016) Glucose- and glycaemic factor-lowering effects of probiotics on diabetes: a meta-analysis of randomised placebo-controlled trials. Br J Nutr 115:1167–1177CrossRefPubMedGoogle Scholar
  24. 24.
    Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249CrossRefPubMedGoogle Scholar
  25. 25.
    Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Vítek L, Haluzík M (2016) The role of bile acids in metabolic regulation. J Endocrinol 228:R85–96CrossRefPubMedGoogle Scholar
  27. 27.
    Volynets V, Machann J, Küper MA et al (2012) A moderate weight reduction through dietary intervention decreases hepatic fat content in patients with non-alcoholic fatty liver disease (NAFLD): a pilot study. Eur J Nutr 52:527–535CrossRefPubMedGoogle Scholar
  28. 28.
    Vrieze A, Van Nood E, Holleman F et al (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143(e7):913–916CrossRefPubMedGoogle Scholar
  29. 29.
    Yeh MM, Brunt EM (2014) Pathological features of fatty liver disease. Gastroenterology 147:754–764CrossRefPubMedGoogle Scholar
  30. 30.
    Zeevi D, Korem T, Zmora N et al (2015) Personalized nutrition by prediction of glycemic responses. Cell 163:1079–1094CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  1. 1.Institut für ErnährungsmedizinUniversität HohenheimStuttgartDeutschland

Personalised recommendations