Der Internist

, Volume 58, Issue 5, pp 429–434 | Cite as

Grundlagen des Mikrobioms

Schwerpunkt: Mikrobiom

Zusammenfassung

Die medizinische Mikrobiologie war bis zur Mitte des 20. Jahrhunderts auf den Nachweis und die Identifizierung von pathogenen Mikroorganismen fokussiert. Nur langsam wuchs das Wissen über die wechselseitige Beziehung von Mensch und Mikroorganismen. Kulturunabhängige Analysemethoden ermöglichten erstmals eine vollständige Abbildung der Zusammensetzung des humanen Mikrobioms. Seither wird die Beteiligung des Mikrobioms an der Pathogenese von Krankheiten erforscht. Ziele des Human Microbiome Project und von MetaHIT sind vergleichende Untersuchungen des Mikrobioms gesunder und erkrankter Menschen. Bibliotheken über die lokalisations- und zeitabhängige Komposition der Mikrobiota gesunder Menschen zeigen eine Assoziation abweichender Zusammensetzungen mit bestimmten Krankheiten. Mathematische Korrelation kann jedoch nicht mit biologischer oder medizinischer Kausalität gleichgesetzt werden. In Zukunft müssen die gewonnenen Hypothesen in funktionellen Experimenten validiert und auf praktisch-klinische Relevanz untersucht werden.

Schlüsselwörter

Mikrobiologie Molekularbiologie DNA-Sequenzierung Mikrobiota Dysbiose 

Fundamentals of the microbiome

Abstract

Until the middle of the 20th century, clinical microbiology was limited to bacterial cultures enabling the detection of pathogenic microorganisms. Knowledge about the mutual relationship between humans and microorganisms has increased slowly. With the introduction of culture-independent analysis methods, comprehensive cataloging of the human microbiome was possible for the first time. Since then, compositional changes in relation to diseases have been studied. The goals of the Human Microbiome Project and MetaHIT include comparative studies of healthy and diseased individuals. Numerous libraries on time- and location-dependent changes of the microbiota composition in human diseases have been created. However, a mathematical correlation does not equal biological or medical relevance. Future research needs to validate the hypotheses generated in these studies in functional experiments and evaluate their true impact on clinical practice.

Keywords

Microbiology Molecular biology Sequence analysis, DNA Microbiota Dysbiosis 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

P.R. Steinhagen und D.C. Baumgart geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Aagaard K, Ma J, Antony KM et al (2014) The placenta harbors a unique microbiome. Sci Transl Med 6:237ra265–237ra265Google Scholar
  2. 2.
    Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bäckhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bik EM (2016) Focus: microbiome: the hoops, hopes, and hypes of human microbiome research. Yale J Biol Med 89:363PubMedPubMedCentralGoogle Scholar
  5. 5.
    Blaser M, Bork P, Fraser C et al (2013) The microbiome explored: recent insights and future challenges. Nat Rev Microbiol 11:213–217CrossRefPubMedGoogle Scholar
  6. 6.
    Consortium HMP (2012) A framework for human microbiome research. Nature 486:215–221CrossRefGoogle Scholar
  7. 7.
    Costello EK, Lauber CL, Hamady M et al (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Davaine C (1863) Recherches sur les infusoires du sang dans la maladie connue sous le nom de sang de rate. C R Acad Sci 57:220–223 (quotation on 221)Google Scholar
  9. 9.
    De Vos WM, De Vos EA (2012) Role of the intestinal microbiome in health and disease: from correlation to causation. Nutr Rev 70(Suppl 1):S45–S56CrossRefPubMedGoogle Scholar
  10. 10.
    Digiulio DB (2012) Diversity of microbes in amniotic fluid. Semin Fetal Neonatal Med 17(1):2–11CrossRefPubMedGoogle Scholar
  11. 11.
    Dominguez-Bello MG, Costello EK, Contreras M et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci 107:11971–11975CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ehrlich P (1899) Croonian lecture: on immunity with special reference to cell life. Proc Royal Soc Lond 66:424–448CrossRefGoogle Scholar
  13. 13.
    Fleischmann RD, Adams MD, White O et al (1995) Whole-genome random sequencing and assembly of haemophilus influenzae Rd. Science 269:496CrossRefPubMedGoogle Scholar
  14. 14.
    Gill SR, Pop M, Deboy RT et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gosalbes M, Llop S, Valles Y et al (2013) Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Exp Allergy 43:198–211CrossRefPubMedGoogle Scholar
  16. 16.
    Grice EA, Segre JA (2012) The human microbiome: our second genome. Annu Rev Genomics Hum Genet 13:151CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jiménez E, Fernández L, Marín ML et al (2005) Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol 51:270–274CrossRefPubMedGoogle Scholar
  18. 18.
    Kamada N, Kim Y‑G, Sham HP et al (2012) Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336:1325–1329CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kau AL, Ahern PP, Griffin NW et al (2011) Human nutrition, the gut microbiome and the immune system. Nature 474:327–336CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Koch R (1882) Die Ätiologie der Tuberkulose. Berl Klin Wochenschr 19:221–230Google Scholar
  21. 21.
    Le Chatelier E, Nielsen T, Qin J et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546CrossRefPubMedGoogle Scholar
  22. 22.
    Le Huërou-Luron I, Blat S, Boudry G (2010) Breast-v. formula-feeding: impacts on the digestive tract and immediate and long-term health effects. Nutr Res Rev 23:23–36CrossRefPubMedGoogle Scholar
  23. 23.
    Ley RE, Hamady M, Lozupone C et al (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Li J, Jia H, Cai X et al (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32:834–841CrossRefPubMedGoogle Scholar
  25. 25.
    Mazmanian SK, Liu CH, Tzianabos AO et al (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118CrossRefPubMedGoogle Scholar
  26. 26.
    Medzhitov R, Preston-Hurlburt P, Janeway CA (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397CrossRefPubMedGoogle Scholar
  27. 27.
    Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res 11:3–11CrossRefPubMedGoogle Scholar
  29. 29.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74:5463–5467CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sekirov I, Russell SL, Antunes LC et al (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904CrossRefPubMedGoogle Scholar
  31. 31.
    Smith LM, Sanders JZ, Kaiser RJ et al (1985) Fluorescence detection in automated DNA sequence analysis. Nature 321:674–679CrossRefGoogle Scholar
  32. 32.
    Tissier H (1900) Recherches sur la flore intestinale des nourrissons: état normal et pathologique. G. Carré et C. Naud, ParisGoogle Scholar
  33. 33.
    Virchow R (1855) Cellular-pathologie. Virchows Arch 8:3–39CrossRefGoogle Scholar
  34. 34.
    Wang J, Jia H (2016) Metagenome-wide association studies: fine-mining the microbiome. Nat Rev Microbiol 14:508–522CrossRefPubMedGoogle Scholar
  35. 35.
    Wischmeyer PE, Mcdonald D, Knight R (2016) Role of the microbiome, probiotics, and ’dysbiosis therapy’ in critical illness. Curr Opin Crit Care 22:347CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci 87:4576–4579CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Xu J, Bjursell MK, Himrod J et al (2003) A genomic view of the human-bacteroides thetaiotaomicron symbiosis. Science 299:2074–2076CrossRefPubMedGoogle Scholar
  38. 38.
    Young V (2016) Therapeutic manipulation of the microbiota: past, present, and considerations for the future. Clin Microbiol Infect 22:905–909CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  1. 1.Zentrum für entzündliche Darmerkrankungen, Medizinische Klinik mit Schwerpunkt Hepatologie und GastroenterologieCharité – Universitätsmedizin Berlin, Campus Virchow-KlinikumBerlinDeutschland

Personalised recommendations