Skip to main content
Log in

Grundlagen des Mikrobioms

Fundamentals of the microbiome

  • Schwerpunkt: Mikrobiom
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Die medizinische Mikrobiologie war bis zur Mitte des 20. Jahrhunderts auf den Nachweis und die Identifizierung von pathogenen Mikroorganismen fokussiert. Nur langsam wuchs das Wissen über die wechselseitige Beziehung von Mensch und Mikroorganismen. Kulturunabhängige Analysemethoden ermöglichten erstmals eine vollständige Abbildung der Zusammensetzung des humanen Mikrobioms. Seither wird die Beteiligung des Mikrobioms an der Pathogenese von Krankheiten erforscht. Ziele des Human Microbiome Project und von MetaHIT sind vergleichende Untersuchungen des Mikrobioms gesunder und erkrankter Menschen. Bibliotheken über die lokalisations- und zeitabhängige Komposition der Mikrobiota gesunder Menschen zeigen eine Assoziation abweichender Zusammensetzungen mit bestimmten Krankheiten. Mathematische Korrelation kann jedoch nicht mit biologischer oder medizinischer Kausalität gleichgesetzt werden. In Zukunft müssen die gewonnenen Hypothesen in funktionellen Experimenten validiert und auf praktisch-klinische Relevanz untersucht werden.

Abstract

Until the middle of the 20th century, clinical microbiology was limited to bacterial cultures enabling the detection of pathogenic microorganisms. Knowledge about the mutual relationship between humans and microorganisms has increased slowly. With the introduction of culture-independent analysis methods, comprehensive cataloging of the human microbiome was possible for the first time. Since then, compositional changes in relation to diseases have been studied. The goals of the Human Microbiome Project and MetaHIT include comparative studies of healthy and diseased individuals. Numerous libraries on time- and location-dependent changes of the microbiota composition in human diseases have been created. However, a mathematical correlation does not equal biological or medical relevance. Future research needs to validate the hypotheses generated in these studies in functional experiments and evaluate their true impact on clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Aagaard K, Ma J, Antony KM et al (2014) The placenta harbors a unique microbiome. Sci Transl Med 6:237ra265–237ra265

    Google Scholar 

  2. Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bäckhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bik EM (2016) Focus: microbiome: the hoops, hopes, and hypes of human microbiome research. Yale J Biol Med 89:363

    PubMed  PubMed Central  Google Scholar 

  5. Blaser M, Bork P, Fraser C et al (2013) The microbiome explored: recent insights and future challenges. Nat Rev Microbiol 11:213–217

    Article  CAS  PubMed  Google Scholar 

  6. Consortium HMP (2012) A framework for human microbiome research. Nature 486:215–221

    Article  Google Scholar 

  7. Costello EK, Lauber CL, Hamady M et al (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davaine C (1863) Recherches sur les infusoires du sang dans la maladie connue sous le nom de sang de rate. C R Acad Sci 57:220–223 (quotation on 221)

    Google Scholar 

  9. De Vos WM, De Vos EA (2012) Role of the intestinal microbiome in health and disease: from correlation to causation. Nutr Rev 70(Suppl 1):S45–S56

    Article  PubMed  Google Scholar 

  10. Digiulio DB (2012) Diversity of microbes in amniotic fluid. Semin Fetal Neonatal Med 17(1):2–11

    Article  PubMed  Google Scholar 

  11. Dominguez-Bello MG, Costello EK, Contreras M et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci 107:11971–11975

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ehrlich P (1899) Croonian lecture: on immunity with special reference to cell life. Proc Royal Soc Lond 66:424–448

    Article  Google Scholar 

  13. Fleischmann RD, Adams MD, White O et al (1995) Whole-genome random sequencing and assembly of haemophilus influenzae Rd. Science 269:496

    Article  CAS  PubMed  Google Scholar 

  14. Gill SR, Pop M, Deboy RT et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gosalbes M, Llop S, Valles Y et al (2013) Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Exp Allergy 43:198–211

    Article  CAS  PubMed  Google Scholar 

  16. Grice EA, Segre JA (2012) The human microbiome: our second genome. Annu Rev Genomics Hum Genet 13:151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiménez E, Fernández L, Marín ML et al (2005) Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol 51:270–274

    Article  PubMed  Google Scholar 

  18. Kamada N, Kim Y‑G, Sham HP et al (2012) Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336:1325–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kau AL, Ahern PP, Griffin NW et al (2011) Human nutrition, the gut microbiome and the immune system. Nature 474:327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koch R (1882) Die Ätiologie der Tuberkulose. Berl Klin Wochenschr 19:221–230

    Google Scholar 

  21. Le Chatelier E, Nielsen T, Qin J et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546

    Article  PubMed  Google Scholar 

  22. Le Huërou-Luron I, Blat S, Boudry G (2010) Breast-v. formula-feeding: impacts on the digestive tract and immediate and long-term health effects. Nutr Res Rev 23:23–36

    Article  PubMed  Google Scholar 

  23. Ley RE, Hamady M, Lozupone C et al (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li J, Jia H, Cai X et al (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32:834–841

    Article  CAS  PubMed  Google Scholar 

  25. Mazmanian SK, Liu CH, Tzianabos AO et al (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118

    Article  CAS  PubMed  Google Scholar 

  26. Medzhitov R, Preston-Hurlburt P, Janeway CA (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  CAS  PubMed  Google Scholar 

  27. Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res 11:3–11

    Article  CAS  PubMed  Google Scholar 

  29. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74:5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sekirov I, Russell SL, Antunes LC et al (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904

    Article  CAS  PubMed  Google Scholar 

  31. Smith LM, Sanders JZ, Kaiser RJ et al (1985) Fluorescence detection in automated DNA sequence analysis. Nature 321:674–679

    Article  Google Scholar 

  32. Tissier H (1900) Recherches sur la flore intestinale des nourrissons: état normal et pathologique. G. Carré et C. Naud, Paris

    Google Scholar 

  33. Virchow R (1855) Cellular-pathologie. Virchows Arch 8:3–39

    Article  Google Scholar 

  34. Wang J, Jia H (2016) Metagenome-wide association studies: fine-mining the microbiome. Nat Rev Microbiol 14:508–522

    Article  CAS  PubMed  Google Scholar 

  35. Wischmeyer PE, Mcdonald D, Knight R (2016) Role of the microbiome, probiotics, and ’dysbiosis therapy’ in critical illness. Curr Opin Crit Care 22:347

    Article  PubMed  PubMed Central  Google Scholar 

  36. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci 87:4576–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu J, Bjursell MK, Himrod J et al (2003) A genomic view of the human-bacteroides thetaiotaomicron symbiosis. Science 299:2074–2076

    Article  CAS  PubMed  Google Scholar 

  38. Young V (2016) Therapeutic manipulation of the microbiota: past, present, and considerations for the future. Clin Microbiol Infect 22:905–909

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Baumgart.

Ethics declarations

Interessenkonflikt

P.R. Steinhagen und D.C. Baumgart geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

H. Lehnert, Lübeck

J. Mössner, Leipzig

B. Salzberger, Regensburg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinhagen, P.R., Baumgart, D.C. Grundlagen des Mikrobioms. Internist 58, 429–434 (2017). https://doi.org/10.1007/s00108-017-0224-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-017-0224-1

Schlüsselwörter

Keywords

Navigation