Skip to main content
Log in

Modulation der intestinalen Mikrobiota durch Ernährungsinterventionen

Modulation of the intestinal microbiota by nutritional interventions

  • Schwerpunkt: Mikrobiom
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Der Mensch lebt mit Milliarden kommensaler Mikroorganismen in Symbiose. Die sogenannte Mikrobiota besiedelt die verschiedenen Grenzflächen, so etwa die Haut, Urogenital- und Gastrointestinaltrakt. Kommensale Bakterien verdrängen besonders im Darm potenziell pathogene Keime, sind an der Synthese von Vitaminen beteiligt und sorgen für die Fermentation von Ballaststoffen. Ein Ungleichgewicht in der bakteriellen Zusammensetzung der intestinalen Mikrobiota ist mit zahlreichen Erkrankungen assoziiert, z. B. mit chronisch-entzündlichen Darmerkrankungen, kolorektalem Karzinom und Fettleberhepatitis. Zudem mehren sich die Anhaltspunkte, dass auch Verschiebungen innerhalb der intestinalen Mikrobiota pathophysiologisch relevant sind. Daher könnte die spezifische Beeinflussung der intestinalen Mikrobiota eine erfolgsversprechende Strategie in der begleitenden Therapie oben genannter Erkrankungen sein. Die intestinale Mikrobiota wird maßgeblich durch Mikro- und Makronährstoffe sowie durch sekundäre Pflanzeninhaltsstoffe in unserer Nahrung beeinflusst. Auch synthetisch hergestellte Nahrungsbestandteile wie Emulgatoren und Süßstoffe können die Diversität der Mikrobiota modulieren. Aufgrund der individuellen Unterschiede in der Zusammensetzung der intestinalen Mikrobiota und der mangelnden Spezifität ist das therapeutische Potenzial von Ernährungsinterventionen zur Beeinflussung der Mikrobiota bei Erkrankungen des Gastrointestinaltrakts noch stark limitiert. Die Kombination neuer technischer Analyseverfahren unter Einbeziehung selbstlernender Algorithmen wird sehr wahrscheinlich schon bald die aktuell bestehenden Limitationen überbrücken und eine personalisierte, hochspezifische und damit therapeutisch wirksame Modulation der Mikrobiota erlauben.

Abstract

Humans live in symbiosis with billions of commensal bacteria. The so-called microbiota live on different biological interfaces such as the skin, the urogenital tract and the gastrointestinal tract. Commensal bacteria replace potentially pathogenic microbes, synthesize vitamins and ferment dietary fibre. An imbalance in the bacterial composition of the intestinal microbiota has been associated with various diseases including gut-associated disorders such as inflammatory bowel diseases, colorectal cancer and nonalcoholic fatty liver disease. Furthermore, a shift in the microbiota composition appears to be of pathophysiological relevance which renders the specific modulation of the intestinal microbiota a promising approach in the treatment of the above mentioned diseases. Our intestinal microbiota composition is mainly modulated by dietary macro- and micronutrients but also by secondary plant compounds and synthetic food additives such as emulsifiers and artificial sweeteners. Nutritional interventions with the purpose to modulate the intestinal microbiota show only limited therapeutic potential in the treatment of gut-associated disorders, which may be due to individual differences in the intestinal microbiota composition and a lack of specificity. A combination of newly established technical analytic approaches involving a machine-learning algorithm may bridge the currently existing limitations by providing a personalized, highly-specific and consequently therapeutically effective microbiota modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Anderson RL, Kirkland JJ (1980) The effect of sodium saccharin in the diet on caecal microflora. Food Cosmet Toxicol 18:353–355

    Article  CAS  PubMed  Google Scholar 

  2. Backhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chassaing B, Koren O, Goodrich JK et al (2015) Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519:92–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Clinton SK, Bostwick DG, Olson LM et al (1988) Effects of ammonium acetate and sodium cholate on N‑methyl-N’-nitro-N-nitrosoguanidine-induced colon carcinogenesis of rats. Cancer Res 48:3035–3039

    CAS  PubMed  Google Scholar 

  5. De Vadder F, Kovatcheva-Datchary P, Goncalves D et al (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96

    Article  PubMed  Google Scholar 

  6. Del Rio D, Rodriguez-Mateos A, Spencer JP et al (2013) Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18:1818–1892

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fava F, Gitau R, Griffin BA et al (2013) The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. Int J Obes (Lond) 37:216–223

    Article  CAS  Google Scholar 

  8. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  PubMed  Google Scholar 

  9. Hamer HM, De Preter V, Windey K et al (2012) Functional analysis of colonic bacterial metabolism: relevant to health? Am J Physiol Gastrointest Liver Physiol 302:G1–9

    Article  CAS  PubMed  Google Scholar 

  10. Hentges DJ, Maier BR, Burton GC et al (1977) Effect of a high-beef diet on the fecal bacterial flora of humans. Cancer Res 37:568–571

    CAS  PubMed  Google Scholar 

  11. Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118

    Article  CAS  PubMed  Google Scholar 

  12. Jensen BA, Nielsen TS, Fritzen AM et al (2016) Dietary fat drives whole-body insulin resistance and promotes intestinal inflammation independent of body weight gain. Metabolism 65:1706–1719

    Article  CAS  PubMed  Google Scholar 

  13. Kellow NJ, Coughlan MT, Reid CM (2014) Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. Br J Nutr 111:1147–1161

    Article  CAS  PubMed  Google Scholar 

  14. Le Chatelier E, Nielsen T, Qin J et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546

    Article  PubMed  Google Scholar 

  15. Lee HC, Jenner AM, Low CS et al (2006) Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res Microbiol 157:876–884

    Article  CAS  PubMed  Google Scholar 

  16. Ley RE, Turnbaugh PJ, Klein S et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Article  CAS  PubMed  Google Scholar 

  17. Loh G, Blaut M (2012) Role of commensal gut bacteria in inflammatory bowel diseases. Gut Microbes 3:544–555

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mcallan L, Skuse P, Cotter PD et al (2014) Protein quality and the protein to carbohydrate ratio within a high fat diet influences energy balance and the gut microbiota in C57BL/6J mice. PLOS ONE 9:e88904

    Article  PubMed  PubMed Central  Google Scholar 

  19. Murphy EF, Cotter PD, Healy S et al (2010) Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 59:1635–1642

    Article  CAS  PubMed  Google Scholar 

  20. Pedersen HK, Gudmundsdottir V, Nielsen HB et al (2016) Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535:376–381

    Article  CAS  PubMed  Google Scholar 

  21. Qiao Y, Sun J, Xia S et al (2014) Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity. Food Funct 5:1241–1249

    Article  CAS  PubMed  Google Scholar 

  22. Sprong RC, Schonewille AJ, Van Der Meer R (2010) Dietary cheese whey protein protects rats against mild dextran sulfate sodium-induced colitis: role of mucin and microbiota. J Dairy Sci 93:1364–1371

    Article  CAS  PubMed  Google Scholar 

  23. Staudacher HM, Whelan K (2016) Altered gastrointestinal microbiota in irritable bowel syndrome and its modification by diet: probiotics, prebiotics and the low FODMAP diet. Proc Nutr Soc 75:306–318

    Article  CAS  PubMed  Google Scholar 

  24. Suez J, Korem T, Zeevi D et al (2014) Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514:181–186

    CAS  PubMed  Google Scholar 

  25. Thaiss CA, Itav S, Rothschild D et al (2016) Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540(7634):544–551

    Article  CAS  Google Scholar 

  26. Tilg H (2012) Diet and intestinal immunity. N Engl J Med 366:181–183

    Article  CAS  PubMed  Google Scholar 

  27. Tuohy KM, Conterno L, Gasperotti M et al (2012) Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. J Agric Food Chem 60:8776–8782

    Article  CAS  PubMed  Google Scholar 

  28. Turnbaugh PJ, Backhed F, Fulton L et al (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  PubMed  Google Scholar 

  30. Ussar S, Griffin NW, Bezy O et al (2015) Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab 22:516–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walsh CJ, Guinane CM, O’toole PW et al (2014) Beneficial modulation of the gut microbiota. FEBS Lett 588:4120–4130

    Article  CAS  PubMed  Google Scholar 

  32. Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Wagner.

Ethics declarations

Interessenkonflikt

S. Derer, H. Lehnert, C. Sina und A.E. Wagner geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

H. Lehnert, Lübeck

J. Mössner, Leipzig

B. Salzberger, Regensburg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derer, S., Lehnert, H., Sina, C. et al. Modulation der intestinalen Mikrobiota durch Ernährungsinterventionen. Internist 58, 435–440 (2017). https://doi.org/10.1007/s00108-017-0217-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-017-0217-0

Schlüsselwörter

Keywords

Navigation