Skip to main content
Log in

Dielectric and ultrasonic properties of rubber wood. Effect of moisture content grain direction and frequency

Dielektrische und Ultraschall-Eigenschaften von Hevea brasiliensis: Einfluß von Feuchte, Faserrichtung und Frequenz

  • Originalarbeiten
  • Published:
Holz als Roh- und Werkstoff Aims and scope Submit manuscript

Abstract

Dielectric properties of rubber wood have been studied at low and microwave frequencies with different moisture content and grain direction. The ultrasonic properties were studied with pulsed longitudinal waves of frequency 45 kHz, Two anisotropic directions have been considered for this study — parallel and perpendicular to grain. The low frequencies were of 0.01, 0.1, L0, 10 and 100 Hz and microwave frequencies were of 1, 2.45, 6, 8, 10, 14 and 17 GHz. The moisture content affected the dielectric constant and dielectric loss factor both at low and microwave frequencies? The moisture content above 30% showed little influence on dielectric properties whereas it increases linearly from 0 to 30% in both the grain directions at low frequencies. A continuous increase of dielectric properties was obtained with the increase of moisture content at microwave frequencies and the trend becomes concave upward. Dielectric properties increase as the frequencies increase except dielectric loss factor at microwave frequencies where reverse trends were observed. Little change of dielectric loss factor was obtained at frequencies above 6 GHz. The parallel to grain direction showed higher dielectric constant and dielectric loss factor compared to perpendicular to grain direction. This dielectric anisotropy of wood may be attributed due to the microscopic, macroscopic molecular as well as chemical constituents of wood. Ultrasonic properties were also affected considerably by the moisture content and grain direction. The dried wood showed higher ultrasonic velocity and elastic stiffness constant compared to green wood. The parallel to grain direction exhibits higher ultrasonic velocity and elastic stiffness constant than perpendicular to grain.

Zusammenfassung

Die dielektrischen Eigenschaften von Hevea brasiliensis wurden bei niedriger und Mikrowellenfrequenz sowie unterschiedlichen Feuchten und Faserrrichtungen untersucht. Die Ultraschalleigenschaften wurden mit gepulsten Longitudinalwellen von 45 kHz bestimmt. Beide Bestimmungen erfolgten parallel und senkrecht zur Faser. Als niedrige Frequenzen wurden 0,01, 0,1, 1,0, 10 und 100 Hz eingesetzt, im Mikrowellenbereich 1, 2, 4, 5, 6, 8, 10, 14 und 17 GHz. Die Feuchte beeinflußt die Dielektrizitätskonstante und den Verlustfaktor in beiden Frequenzbereichen. Zwischen 0 und 30% Feuchte steigt die Dielektrizitätskonstante bei niedrigen Frequenzen linear

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bucur V (1983) An ultrasonic method for measuring the elastic constants of wood increment cores bored from living trees. Ultrasonic 21(3): 116–126

    Article  Google Scholar 

  • Bucur V (1988) Wood structural anisotropy estimated by acustic invariants. IAWA. Bulletin 9(1): 67–74

    Google Scholar 

  • Bucur V, Feeny F (1992) Attenuation of ultrasound in solid wood. Ultrasonics. 30(2): 76–81

    Article  Google Scholar 

  • James WL, Hamil DW (1965) Dielectric properties of Douglus Fir measured at microwave frequencies. Forest Prod. J. 15(2): 51–56

    Google Scholar 

  • James WL (1975) Dielectric properties of wood and hardboard. Variation with temperature, frequency, moisture content and grain direction. Res. Pap. USDA Forest Service. Forest Prod. Lab. Madison, Wisconsin

    Google Scholar 

  • James WL (1977) Dielectric behaviour of Douglus-fir at various combination of temperature, frequency and moisture content. Forest Prod. J. 27(6): 44–48

    Google Scholar 

  • James JF, Robert JR, Drum JR (1995) Nondestructive evaluation of honeycomb and surface checks in Red Oak lumber. Forest Prod. J. 45(5): 42–45

    Google Scholar 

  • Kabir MF, Sidek HAA, Daud WM, Khalid K (1997) Detection of knot and split of rubber wood by non destructive ultrasonic method. Journal of Tropical Forest Product 3(1): 88–96

    Google Scholar 

  • Kamioka H (1988) Effect of ultrasonic bonding materials on velocity and attenuation of sound in Red Lauan wood Jpn. J. Appl. Phys. 27(2): 188–191

    Article  CAS  Google Scholar 

  • Kroner K, Pungis L (1952) Zur dielektrischen anisotropic des natureholzes im frequenzbereich. Holzforschung 6(1): 13–16

    Article  CAS  Google Scholar 

  • Lin RT (1967) Review of the dielectric properties of wood and cellulose. Forest Prod. J. 17(7): 61–66

    CAS  Google Scholar 

  • Mikhailovskaja KP (1972) Investigation of moisture characteristics of wood electric parameters. Author’s paper on Thesis for Candidate of Science degree, LTI, CBP, Leningrad, (in Russian)

    Google Scholar 

  • Nanassy AJ (1972) Dielectric measurement of moist wood in a sealed system. Wood Sci. Technol. 6: 67–77

    Article  CAS  Google Scholar 

  • Nakamura N, Nanami N (1993) The sound velocity and moduli of elastic in the moisture desorption process of Sugi wood. Mokuzai Gakkaishi. 39(2): 1341–1348

    Google Scholar 

  • Norimoto M, Yamada T (1970) The dielectric properties of wood IV. On the dielectric anisotropy of wood. Wood Res. 50: 36–49

    Google Scholar 

  • Norimoto M, Yamada T (1972) The dielectric properties of wood VI. On the dielectric properties of the chemical constituent of wood and the dielectric anisotropy of wood. Wood Res. 52: 31–43

    Google Scholar 

  • Norimoto M, Yamada T (1976) Dielectric properties of wood. Wood Res. 59/60: 106–152

    Google Scholar 

  • Norimoto M, Hayashi S, Yamada T (1978) Anisotopy of dielectric constant in coniferous wood. Holzforschung. 32(5): 167–172

    Article  CAS  Google Scholar 

  • Parker ML, Kennedy RW (1973) The status of radiation densitimetry for measurement of wood specific gravity. Proc. IUFRO, Pretoria. 5(2): 882–893

    Google Scholar 

  • Polge H (1984) Essais de caracterisation de la veine verte du merisier. Ann. Sci. For. 41: 45–58

    Article  Google Scholar 

  • Rafalski J (1967) Dielectric properties of compressed Beech wood. Forest Prod. J. 17(8): 64–65

    Google Scholar 

  • Sakai H, Minamisawa A, Takagi K (1990) Effect of moisture content on ultrasonic velocity and attenuation in woods. Ultrasonics. 28: 382–385

    Article  Google Scholar 

  • Skaar C (1948) The dielectric properties of wood at several radio frequencies. NY State Coll. For. Syracuse NY, Tech. Pub. 69, 36 pp

  • Torgovnikov GI (1993) Dielectric properties of wood and wood based materials. Springer Verlag, New Work.

    Google Scholar 

  • Tiuri MK, Jokela K, Heikkila S (1980) Microwave instrument for accurate moisture and density measurement of timber. Journal of Microwave Power. 15 (4): 251–254

    Google Scholar 

  • Vermas HF (1974) Dielectric properties of Pinus pinaster as a function of its Alcohle-Benzen-soluble content. Wood Sci. 6(4): 363–367

    Google Scholar 

  • Vermas HF (1976) The dielectric constant of solid wood substances calculated with two different methods. Holzforschung. 30(3): 97–98

    Google Scholar 

  • Venkateswaran A, Tiwari SY (1964) Dielectric properties of moist wood. Tappi. 47(1):125–128

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kabir, M.F., Daud, W.M., Khalid, K. et al. Dielectric and ultrasonic properties of rubber wood. Effect of moisture content grain direction and frequency. Holz als Roh- und Werkstoff 56, 223–227 (1998). https://doi.org/10.1007/s001070050305

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001070050305

Keywords

Navigation