Skip to main content
Log in

Modelling the elastic properties of softwood

Part II: The cellular microstructure

Simulieren der elastischen Eigenschaften von Nadelholz

Teil 11: Die zelluläre Feinstruktur

  • Originalarbeiten
  • Published:
Holz als Roh- und Werkstoff Aims and scope Submit manuscript

Abstract

Numerical Finite Element models are presented which relate the macroscopic elastic properties of softwood to local cell characteristics such as cell size, wall thickness, moisture content and microfibril angle. Preliminary results show good agreement with reported values. The model is used to assess the effects of S2 microfibril angle and spiral grain on orthotropic wood stiffness, and to predict the stiffening effect of latewood bands.

Zusammenfassung

Der Beitrag präsentiert numerische FE-Modelle, welche die makroskopischen elastischen Eigenschaften von Nadelholz auf lokale Zellmerkmale wie Größe, Wanddicke, Feuchte und Winkel der Mikronbrillen zurückführen. Erste Ergebnisse zeigen gute Übereinstimmung mit Literturwerten. Mit Hilfe des Modells wird der Einfluß des Winkels der Mikronbrillen in der S2 und der Faserorientierung auf die Biegesteifigkeit des Holzes abgeschätzt sowie ein Versteifungseffekt der Spätholzzonen vorhergesagt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bodig J, Goodman JR (1973) Prediction of Elastic Parameters for Wood, Wood Science, 5(4), 249–264

    Google Scholar 

  • Carrington H (1923) The Elastic Properties of Spruce, Philosophical Magazine 45, 1055–1057

    Google Scholar 

  • Cave ID (1968) The anisotropic elasticity of the plant cell wall, Wood Sci. Technol. 2(4), 268–278

    Article  Google Scholar 

  • Cave ID (1969) The longitudinal Young’s modulus of Pinus Radiata, Wood Sci. Technol. 3(1), 40–48

    Article  Google Scholar 

  • Cave ID (1978) Modelling moisture-related mechanical properties of wood — Part II: Computation of properties of a model of wood and comparison with experimental data, Wood Sci. Technol 12: 127–139

    Article  CAS  Google Scholar 

  • Cook RD (1981) Concepts and Applications of Finite Element Analysis, 2nd edition, John Wiley and Sons, New York

    Google Scholar 

  • Cousins WJ (1976) Elastic modulus of lignin as related to moisture content. Wood Sci. Technol. 10: 9–17

    Article  Google Scholar 

  • Cousins WJ (1978) Young’s modulus of hemicellulose as related to moisture content. Wood Sci. Technol. 12: 161–167

    Article  CAS  Google Scholar 

  • Cousins WJ (1977) Elasticity of isolated lignin: Young’s modulus by a continuous indentation method. NZ J. Forestry Sci. 7(1): 107–112

    CAS  Google Scholar 

  • Cown DJ (1975) Variation in tracheid dimensions in the stem of a 26-year old radiata pine tree, Appita Vol 28(4), 237–245

    Google Scholar 

  • Cown DJ, Young GD, Kimberley MO (1991) Spiral Grain Patterns in Plantation Grown Pinus Radiata, NZ J. Forestry Sci. 21(2/3): 206–216

    Google Scholar 

  • Donaldson LA (1992) Within- and between-tree variation in microfibril angle in Pinus radiata, NZ J. Forestry Sci. 22(1): 77–86

    Google Scholar 

  • Gillis PP (1972) Orthotropic Elastic Constants of wood, Wood Sci. Technol 6(2): 138–156

    Article  Google Scholar 

  • Gibson LJ, Ashby MF (1988) Cellular Solids; Structure and Properties, (Pergamon)

    Google Scholar 

  • Harrington JJ, Booker R, Astley RJ (1998) Modelling the elastic properties of softwood — Part I: The cell-wall lamellae, Holz Roh-Werksoff 56: 37–49

    Google Scholar 

  • Kahle E, Woodhouse J (1994) The influence of Cell Geometry on The elasticity of Softwood, J. Materials Sci. 29, 1250–1259

    Article  Google Scholar 

  • Kininmonth JA, Whitehouse LJ (eds.) (1991) Properties and Uses of New Zealand Radiata Pine: Volume One — Wood Properties. New Zealand Ministry of Forestry, Rotorua, NZ

    Google Scholar 

  • Koponen S, Toratti T, Kanerva P (1989) Modelling longitudinal elastic and shrinkage properties of wood, Wood Sci. Technol. 23: 55–63

    Article  Google Scholar 

  • Koponen S, Toratti T, Kanerva P (1991) Modelling elastic and shrinkage properties of wood based on cell structure, Wood Sci. Technol. 25: 25–32

    Article  Google Scholar 

  • Mark RE (1967) Cell Wall Mechanics of Tracheids, Yale Univ Press

  • Navi P, Rastogi PK, Gresse V, Tolou A (1995) Micromechanics of Wood subject to Axial Tension, Wood Sci. Technol. 29: 411–429

    Article  CAS  Google Scholar 

  • Navi P, Huet C (1989) A three dimensional multilevel technique to study influence of the fiber microstructure on wood macroscopic properties, Proc. third joint ASCE/ASME mechanics conf, San Diego, La Jolla, July 1989, 61–67

  • Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers, J. Polym. Sci. 57: 651–666

    Article  CAS  Google Scholar 

  • Salmen L (1986) The Cell Wall as a Composite Structure, in Paper, Structure and properties (J.A. Bristow and P. Kolseth eds) Marcel Dekker, New York

    Google Scholar 

  • Walker JCF, Butterfield BG (1995) The Importance of Microfibril Angle for the Processing Industries. NZ J. Forestry 40(4), 34–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research reported in this article is funded by the New Zealand Forest Research Institute and by the Public Good Science Fund of New Zealand through Research Gant UOC401.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astley, R.J., Stol, K.A. & Harrington, J.J. Modelling the elastic properties of softwood. Holz als Roh-und Werkstoff 56, 43–50 (1998). https://doi.org/10.1007/s001070050262

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001070050262

Keywords

Navigation