Skip to main content
Log in

The mechanics of bandsaw cutting

Mechanik des Bandsägens. Teil I: Beschreibung der Wechselwirkungen zwchen Bandsäge und Werkstück

Part I: Modelling the Interactions Between a Bandsaw Blade and the Workpiece

  • Originals
  • Published:
Holz als Roh- und Werkstoff Aims and scope Submit manuscript

Abstract

This paper presents the development of a mathematical model designed to predict the effect of bandsaw variables upon cutting accuracy. New developments contained in the model are the explicit consideration of contact between the body of the bandsaw and the sawn surfaces of the wood and the representation of cutting forces in terms of Brownian motion functions. The model allows consideration of blade geometry, bandmill strain, tensioning stresses, blade speed, bandmill strain characteristics, blade speed, and side clearance.

Zusammenfassung

Ein Modell wird vorgestellt, das den Einfluß der Bandsägenparameter auf die Schnittgenauigkeit voraussagen kann. Die Neuentwicklung des Modells besteht zum einen darin, daß der direkte Kontakt zwischen Sägeblatt und Werkstück mit einbezogen wird, zum anderen, daß zur Darstellung der Schneidekräfte das mathematische Modell der Brown’schen Bewegungen herangezogen wird. Das Modell erlaubt Aussagen über folgende Parameter: Blattgeometrie, Sägespannung, Spannungsverformungen, Blattgeschwindigkeit, Spannungscharakteristik und Freischnitt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

blade width

c :

blade speed

d :

tooth depth; difference between s and g

C :

knot cutting force coefficients

D :

plate bending stiffness=Eh3/12(1−ν2)

D c :

depth of the cut

e :

component of the cutting force about the mean force

E :

Young’s modulus

E mn(y):

shape functions of blade deflection

f :

frequency in cycles per second; force acting on a tooth

\(\bar f\) :

mean lateral cutting force

f c :

filter cutoff frequency

F :

lareral force on the blade

F L :

lateral cutting force

g :

clearance gap

[G] :

gyroscopic matrix

h :

plate thickness

k :

stiffness

[K] :

stiffness matrix

K eq :

equivalent tooth-tip stiffness

K o, Qo :

effective tooth-tip stiffnesses

K t :

bending stiffness of a tooth

K it :

tooth-tip stiffness of a single tooth

L :

span between the guides

m :

average cutting force at an instant in time

[M] :

mass matrix

N T :

number of teeth in the cut

p :

planer allowance

P :

tooth pitch

{P} :

Load vector for Galerkin formulation

q(x, y, t) :

lateral loading per unit area

r :

distance from the center of a knot

s :

side clearance

{S} :

Generalized coordinates for Galerkin formulation

S it :

cut path at the i-th increment into the cut for the t-th tooth

S o :

standard deviation of blade deflection when no contact occurs

S e :

standard deviation of e

S f :

standard deviation of the cutting forces

S m :

standard deviation of m

S T :

standard deviation of blade deflection when contact occurs

t :

time

T :

bandmill strain (axial preload)

U, V :

sawn surfaces

w(x, y, t) :

lateral blade deflection

(x, y, z) :

coordinates on the blade

\(\bar x\) :

mean tooth deflection for a cut

x T :

tooth-tip deflection

z :

a Gaussian random number; probability variable

Z o :

nondimensional clearance gap

α:

factor relating S T to σ T

ε:

a small lever arm

κ:

strain system parameter

λ:

wave length; eigenvalue

μ:

mass per unit area

ν:

Poisson’s ratio

σ:

density

σ B :

standard deviation of the between-board thickness; stress due to in-plane bending

σ c :

stress in center of the blade due to tensioning

σ G :

gullet stress

σ R :

roll tensioning stress at the edges of the blade

σ W :

standard deviation of the within-board thickness

σ T :

standard deviation of the total board thickness; stress due to bandmill strain

References

  • Axelsson, B.; Grundberg, S. A.; Gronlund, J. A. 1991: “The Use of Gray Scale Images when Evaluating Disturbances in Cutting Force Due to Changes in Wood Structure and Tool Shape,” Holz Roh-Werkstoff, 49: 491–494

    Article  Google Scholar 

  • Breznjsk, M.; Moen, K. 1972: On the Lateral Movement of the Bandsaw Blade Under Various Cutting Conditions, Norsk Treteknisk Institutt, No. 46

  • Gronlund, A.; Karlsson, L. 1980: “Praktiska rad vid Bandsagning,” STFI-Meddelande serie A 666, 41 pages

  • Kirback, E. 1985: A Procedure to Accurately Determine the Minimum Side Clearance for Wood Cutting Saws, FORINTEK Canada Corp.; 11 pp

  • Lehmann, B. F. “The Cutting Behaviour of Band Saws,” Ph. D. Thesis. Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada, 1993

    Google Scholar 

  • Mote, C. D. 1965: “Some Dynamic Characteristics of Band Saws,” Forest Products Journal, 15, (1): 37–41

    Google Scholar 

  • Okamoto, N.; Nakazawa, M. 1979: “Finite Element Incremental Contact Analysis with Various Frictional Conditions,” Int. J. Numerical Methods Eng., 14: 337–357

    Article  Google Scholar 

  • Peitgen, H. O.; Saupe, D. (Eds.), 1988: The Science of Fractal Images, Springer-Verlag, New York

    Google Scholar 

  • Reineke, L. H. 1956: “Sawing Rates Sawdust Chambering and Spillage,” Forest Prod. J. 6 (9): 348–354

    Google Scholar 

  • St. Laurent, A. 1970: “Effects of Sawtooth Edge Defects on Cutting Forces and Sawing Accuracy,” Forest Products Journal, Vol. 20, No. 5, pp. 33–40

    Google Scholar 

  • St. Laurent, A. 1971: “Influence des noeuds sur les forces de oupe dans le sciage du bois,” Canadian J. Forest Res. 1: 43–56

    Article  Google Scholar 

  • Tseng, J. 1980: “The Application of the Mixed Finite Element Method to the Elastic Contact Problem,” Master’s Thesis, Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, Canada

    Google Scholar 

  • Ulsoy, A. G. 1979: Optimizing Saw Design and Operation — Vibration and Stability of Band Saw Blades: A Theoretical and Experimental Study, Technical Report 35.01.330, University of California Forest Products Laboratory, Richmond, California, 117 pages

    Google Scholar 

  • Ulsoy, A. G.; Mote, C. D.; Szymani, R. 1978: “Principle Developments in Band Saw Vibration and Stability Research,” Holz Roh-Werkstoff, 36: 273–280

    Article  Google Scholar 

  • Ulsoy, A. G.; Mote, C. D. 1980: “Analysis of Bandsaw Vibration,” Wood Science, Vol. 13, No. 1

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work reported in this paper was funded by the Science Council of British Columbia and MacMillan Bloedel Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehmann, B.F., Hutton, S.G. The mechanics of bandsaw cutting. Holz als Roh- und Werkstoff 54, 423–428 (1996). https://doi.org/10.1007/s001070050214

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001070050214

Keywords

Navigation